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Abstract 

Determining Micromechanical Strain in Nitinol.  MATTHEW STRASBERG (Cornell 

University, Ithaca, NY 14853) ERICH OWENS (Albion College, Albion, MI 49224) APURVA 

MEHTA (Stanford Linear Accelerator Center, Menlo Park, CA 94025) SAMUEL WEBB 

(Stanford Linear Accelerator Center, Menlo Park, CA 94025) 

 

Nitinol is a superelastic alloy made of equal parts nickel and titanium.  Due to its unique shape 

memory properties, nitinol is used to make medical stents, lifesaving devices used to allow blood 

flow in occluded arteries.  Micromechanical models and even nitinol-specific finite element 

analysis (FEA) software are insufficient for unerringly predicting fatigue and resultant failure.  

Due to the sensitive nature of its application, a better understanding of nitinol on a granular scale 

is being pursued through X-ray diffraction techniques at the Stanford Synchrotron Radiation 

Laboratory (SSRL) at the Stanford Linear Accelerator Center (SLAC).  Through analysis of 

powder diffraction patterns of nitinol under increasing tensile loads, localized strain can be 

calculated.  We compare these results with micromechanical predictions in order to advance 

nitinol-relevant FEA tools.  From this we hope to gain a greater understanding of how nitinol 

fatigues under multi-axial loads. 
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INTRODUCTION 

Nitinol 

A biomedical stent is a lifesaving device used to allow blood flow in an occluded artery.  

Most stents produced are made of nitinol, shape memory alloy that can be drastically deformed 

and then heated back to its original shape.  This allows for the stent to be compacted for easier 

insertion into an artery and then expanded, restoring proper blood flow.  Once placed in a 

patient, the stent will expand and contract with each heartbeat.  For the typical patient, these 

stents will undergo some half a billion cycles in the ten year lifetime required by the FDA. 

 As a result, designing against fatigue is a pressing concern in this industry.  Current 

designs implement micromechanical models and nitinol-specific finite element analysis (FEA) to 

predict fatigue characteristics.  However, stents are failing earlier than anticipated.  This 

deviation can be accounted for by the lack of knowledge of how residual stress accumulates in 

nitinol.  Continuum mechanics, the current model of analyzing stress and strain, is based in the 

macroscopic scale where elastic and plastic deformations are merely terms to relate the quality of 

strain in a material.  Thus a superelastic material is modeled in the same manner as any other 

material, just with different numerical constants (Young’s Modulus, Poisson’s ratio, etc…).  

However, on the granular and atomic scales such deformations have tangible meanings.  

Atomically, elastic deformation corresponds to a stretching of bonds and plastic deformation 

refers to breaking of bonds.  As a result, understanding the nanocrystalline structure of nitinol is 

crucial to understanding how loading translates into strain, thus causing fatigue. 

Diffraction 

X-ray diffraction can be used to determine nanocrystalline structure utilizing Bragg’s 

Angle principles and Laue’s equations.   Those truly interested in the theory and practical 
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derivations should seek an outside text on X-ray diffraction [1], but the basic principles will be 

discussed in the following. Using a plane-wave source with a wavelength smaller than the lattice 

spacing, the waves will reflect off the atoms and constructively interfere, Figure 1, if Bragg’s 

equation is satisfied: ( ) λϑ nd =sin2  , where d is the spacing between atomic planes, λ  is the 

wavelength, and 2θ is the supplementary angle between the incident wave and the reflected 

wave.  Meaning the path difference of two waves is equal to some integer multiple of the 

wavelength. The inverse relation between d and θ implies the larger the spacing d the smaller the 

angle of reflection θ.  Defining Q as the vector denoting the change in momentum from the 

incident wave and reflected wave, then Q = (4π sin θ)/λ and bisects the incident and reflected 

waves thus pointing along d.  Figure 2 is the same geometry, just rotated θ as a matter of 

convenience.  Note, the incident wave is normal to the sample and is deflected an angle 2θ as 

before.  As mentioned the change in momentum vector, Q, bisects the angle between the incident 

wave and the reflected wave or is an angle θ from the surface plane of the sample.  The angle 

between Q and the surface plane of the sample will be given the generic name ω.  This 

convention is used because for any sample there will be multiple d spacings and as a result 

multiple angles of deflection θ, where d spacings are the distance between atomic planes.  Thus, 

ω is used to just to track the position of the Q vector.  Since this is a three dimensional system 

one more angle is needed to locate Q, that angle will be called χ.  Visualize χ as rotating the Q 

vector around the incident beam Io into the page while maintaining a constant ω with the surface 

plane.  Physically, χ corresponds to different orientations of a d spacing thus the reflected beam 

can be envisioned as line down the surface of a cone with apex 2θ.  In order to extract a 

diffraction pattern from this configuration, an area detector is placed normal to the incident 

beam.  The detector will intersect the reflected wave cone creating a ring, called a χ arc or χ ring, 
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in the diffraction pattern, shown in Figure 3.  Recalling the inverse relation between d and θ, the 

rings closer to the center of the pattern corresponded to the larger d spacings in the atomic 

structure.  Accordingly, there will be a different ring for each d spacing, thus each ω, as shown in 

Figure 3.  In an unstrained case, such as Figure 4, the χ rings are circular, but as a load is 

introduced the rings change shape.  In order to understand the effect loading has on a diffraction 

pattern for nitinol, let’s first discuss the micromechanical processes in nitinol. 

Nitinol Micromechanics 

There are four micromechanical processes in Nitinol: elastic deformation, phase 

transformation, twining/de-twining, and plastic deformation.  Nitinol has two primary phases in 

the solid state that are both temperature and strain energy dependent: austenite and martensite.  

How to create nitinol in a certain phase for a certain temperature is a whole science in itself, but 

this experiment uses nitinol in the austenite phase at room temperature.  Figure 4 is the pattern 

for the unstrained austenite state, which has concentric circular χ rings.  As a load is introduced, 

the austenite begins to elastically deform which translates to reversibly stretching of atomic 

bonds.  If the load, thus strain, is uniform in all directions, i.e. hydrostatic, then the χ rings will 

maintain their circular shapes but the radius of each ring will change.  Due to the inverse relation 

of d and θ, if the sample is under compression the radii will increase corresponding to a decrease 

in d; conversely if the sample is under tension the radii will decrease corresponding to an 

increase in d.  For non-hydrostatic forces, such as the uniaxial tension in this experiment, the χ 

rings become elliptical.  As the load increases, while still in the range of elastic deformation, the 

rings become more eccentric.  For analysis it is convenient to transform the diffraction pattern 

from a collection of rings to a series of lines.  This is done by unfolding the rings in a program, 

Fit2D, using the cake function.  Figure 5 shows three sample peaks at increasing levels of strain, 
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the vertical axis is χ varying from -π to +π and the horizontal axis is Q over an arbitrary range in 

nm-1.  The unstrained caked peak is shown in the upper left corner of Figure 5, and is a vertical 

line.  As strain is increased, the peak changes from a straight line to a double arch of increasing 

eccentricity.  As strain increases, the intensity of the peak decreases and starts to disappear.  The 

disappearance of a peak corresponds to the appearance of another peak indicating a phase 

transformation.  Specifically, the austenite is transforming to martensite, which has a different 

atomic spacing hence the disappearing and appearing of peaks.   

The scope of this paper only covers elastic deformation in austenite; however I will 

discuss the other the micromechanical processes in order to create a broader understanding of 

diffraction theory.  Figure 6 shows nitinol in the martensite phase, the peak is the vertical orange 

and pink stripe.  The variation in intensity within the peak, the purple spots on the first image, 

relate that there is a certain texture within the material.  Although this starting texture was 

arbitrary, the bright spots do indicate there were more martensite unit cells oriented at χ zero and 

π in that sample.  Again, each successive image in Figure 6 corresponds to an increased level of 

strain.  As strain is increased the texture progresses to a different configuration, one more 

favorable to the strain conditions.  This texture is called the twined state and is recognized by the 

two distinct bright spots, or poles, on the caked image.  Under an even greater strain as shown in 

the last row of Figure 6, the peak starts to widen and, although not obvious on this scale, starts to 

lower in intensity.  These changes, increase in peak width and decrease in peak intensity, 

coincide with plastic deformation.  Physically, the unit cell clusters are breaking apart shortening 

the coherence length within the sample.  Thus, the intensities of each cluster have a summing 

effect rather than a multiplicative effect if the sample was still continuous. 
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Using diffraction images of austenite under elastic deformation, this paper will discuss 

and develop techniques for finding strain on the micro-scale.  This will be done in Q-space and 

relate that to the sample geometry.  Through analysis of this strain, the effect of macro-strain on 

the material will become more relevant aiding in design against fatigue.   

MATERIALS AND METHODS 

Diffraction 

The diffraction was performed by Apurva Mehta and David Bronfenbrenner at SSRL.  

The laboratory was setup for routine powder diffraction of a thin strip specimen with a 0.97350Å 

beam directly incident on the sample.  A thin film of nitinol was placed in a constant strain 

device and elongated at set increments until 470 microns of elongation.  Figure 7 shows the 

geometry of the strain device inducing; the strain induced by this device will be referred to as 

macro-strain.  Due to the precision of the strain inducing mechanism, the macro-strain will only 

be considered in relative terms.   

Data processing 

Fit2D, a freeware program http://www.esrf.fr/computing/scientific/FIT2D, was used to 

convert the raw data into a more usable form.  For each pattern, each diffraction ring was 

isolated and “unfolded” into a linear form using the cake function (see Fit2D help file for 

information on the cake function).  Figure 8 shows three diffraction patterns, three of fourteen in 

the data set, each at a different level of macro-strain.  For each diffraction pattern three χ rings or 

peaks (in Miller indices hkl: 110, 200, 211) were caked in Fit2D as shown.  These caked images 

were analyzed in 2DPeakFinder, which extracts the peak position, intensity, and width for every 

angle χ.  2DPeakFinder is a Matlab script written by [2].  

 



 6

RESULTS AND DISCUSSION 

Unstrained do 

The question becomes, at what strain do these micromechanical processes occur?  In 

order to find the strain locally we find the difference in the d spacings along a Q vector and the 

unstrained d spacing (d0).  To find d0 we must analyze the unstrained image.  Looking at the 

caked images, the unstrained peak should be perfectly straight, recall circular ring to straight line 

and elliptical ring to arches.  Practically this is a difficult thing to determine by eye using only 

the Fit2D images.  Thus, a computational tool, a Matlab script, was developed by [2] to analyze 

the caked image and remove background intensity.  This tool assumes a Gaussian shape for peak 

intensity and thus is able to determine the position of the peak in terms of Q and χ, the width of 

the peak in Q, and the intensity for each caked image.  Figure 9 shows the unstrained 110 peak 

plotted with Q as a function of χ, which should be a straight line.  Since the strain induced is 

uniaxial, the resulting change in the diffraction ring will be elliptical and thus create symmetric 

arches in the caked image. However, as shown in Figure 9 there is some variance which is not 

symmetrical and thus cannot be attributed to strain.  It is not expressly stated, but to get the data 

in the form shown in Figure 9 the data has undergone two filtrations.  First, the diffraction 

pattern was turned into a caked imaged in Q-space using Fit2D.  Next, the relevant information 

from the caked image was extracted in Matlab.  Both of these processes introduce some error 

because of the nature of their algorithms and account for the variance in the data.  In order to 

locate the location of the unstrained peak in Q-space, the data was fit using a basic two element 

Fourier model with Q as a function of χ: ( ) χχχ fbfaaQ sincos 110 ++=    where a0, a1, b1, 

and f are all constants.  Giving the unstrained Q location as [a0] and [the original data – a0] as a 

calibrating factor to adjust for the error discussed above.  The calibrating factor for the 110 peak 
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will be subtracted from each strained set of data for the 110 peak.  This process is repeated for 

every unstrained peak (110,200,211).  Once knowing the location in Q for the unstrained peak, 

d0 can be found using the relation Qd /2π= .  This information is shown in Table 1. 

Strain Formulae 

Knowing d0, the only other information needed to find strain along the Q vector is dχ,ω.  

The strained data undergoes the same filtrations, Fit2D and 2dPeakFinder, thus must utilize the 

calibration factor mentioned above.  For the sake of clarity, we will only discuss the 110 peak 

and will provide the necessary definitions in Table 2.  We will refer to Qfit as the desired result 

for which all strain calculations will be done.  Qfit is the result of a weighted Fourier fit 

( ( ) χχχ fbfaaQ fit sincos 110 ++= ).  Using this type of fit assumes the deviation from the 

unstrained image is due to purely axial loading.  The input of the Fourier fit is (Qstrain - Calibrant) 

as a function of χ and refined by weighting each point by its Intensity.  As discussed before, the 

Q vector, or specifically Qfit, can be located using angles χ and ω.  Thus the strain is given as: 

o

o

d
dd −

=′ ωχ
ωχε

,
, , where fitQd /2, πωχ =  and, since ω is the same as θ in this geometry 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

π
λ

ω
4

sin 1 fitQ
, where λ is the wavelength of the incident X-ray.  The strain along the Q 

vector can also be expressed in terms of the sample coordinate system, shown in Figure 10.  

Logically working backwards, if we assume the strain in the sample coordinate system is of the 

form of a second order, symmetric tensor having six unique elements then we can transform the 

sample strain into strain along Q.  Accordingly, the strain along the Q vector will be:

 jkjk aa εε ωχ 33, =′   
χωωχω
ωχχωχ
χωχωω

coscoscossinsin
cossincossinsin
cossinsinsincos

−−
−−

=ija  
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Where aij is the transformation matrix between the two coordinate systems.  Giving the strain 

along Q as 
( ) ( ) ( )
( ) ( ) ( ) zzyzyy

xzxyxx

εχωεχωεχω

εωχεωχεωε ωχ

22222

2
,

coscos2sincossincos

2sincos2sinsinsin

+++

++=′
   

Knowing both sides of the equation for various χ and ω, the strain matrix can be determined.  

Rather than solving an absurdly large system of equations, instead the method of least squares 

can be applied modeling this system as the sum of six independent variables, each term in 

parenthesis, with corresponding coefficients, each accompanying strain term.  This equation is 

different than one discussed by [3], which was derived by geometric means.  We believe the 

discrepancy is due to a mathematical error in [3]. 

Strain Calculations 

Specifically, this least squares routine was run for three χ rings (110, 200, 211 peaks) for 

χ ranging from –π to +π.  The fit was performed for fourteen levels of macrostrain, but we will 

discuss in detail the relative strain case 350.   Figure 11a,b, and c plot the the 110, 200, and 211 

peaks with the calibrated data in red and the fitted data in blue.  Looking at Figure 11c, there is a 

dip in the data values around χ = 1.5.  This dip is due to the force apparatus blocking the X-ray 

from hitting the dector which resulted in a gap in the caked image.  The Fourier fitting process 

adjusts for this.  Processing these peaks through the least squares routine mentioned above 

results in the strain tensor and estimated standard deviations (esds), which are shown in Table 3.  

Looking at the strain tensor, the axial strain in the y direction corresponds to the direction of the 

exhibited force and, accordingly, is positve and larger in magnitude than the strain in the other 

directions.  The strains in the orthogonal directions are negative and smaller in magnitude as 

expected.  Figure 12 shows microstrain, in percent strain, versus relative macrostrain, unitless.  

The shear strains are consistently zero, as mandated by the Fourier fit, thus demonstrating the 



 9

validity of this process of finding strain.  In addition, the strains in the principle axes increase in 

magnitude proportionally with marcostrain.  However, the strain in the z direction is larger in 

magnitude than the strain in the x direction.  This indicates an anisotropy in the material, either a 

property of the microstructure or of the strain geometry.  Figures 13a-f show show each strain 

element plotted with their 95% cofidence intervals.  Strain the y and z directions have very small 

esds indicating a very high level of percision.  On the other hand, strain in the x-direction has 

much larger esds indicating that more data is needed to decrease this noise.  To elaborate, the x 

direction is perpendicular to the sample surface and the displacement in that direction is a 

function of ω, ( ωcosd ).  While d varies inversely to Q, the relation between Q and ω is given 

by: ⎟
⎠
⎞

⎜
⎝
⎛= −

π
λω

4
sin 1 Q .  Even with a large deviation in Q space, say from 41.5 to 42 nm-1 for the 

200 peak, cos ω changes from 0.9469 to 0.9455 (–0.13 %).  Thus, strain in the x direction is 

being defered from effectively only three points, one from each χ ring, while the strain in the y 

and z directions is obtained from a much larger population.  

Hydrostatic Strain 

Recall the fitting format ( ) χχχ fbfaaQ fit sincos 110 ++= .  The a0 term refers to a 

position in Q that can be considered the position of the peak in the caked image.  Some dstrain can 

be determined for every a0, (a value in q space), at every level of stain and ultimately translated 

into hydrostatic strain along the Q vector.  Hydrostatic strain refers to axial strain uniform in all 

directions.  Figure 14, shows hydrostatic strain plotted relative to macro-strain for each χ ring.  

Notice the hydrostatic strain of 200 peak increases at a much faster rate than the other peaks.  

This is may be an indication of needing to recalibrate the diffraction image in Fit2D for every 

strain level.  Otherwise, strain is dependent on hkl, the peak number.  In other words, it 
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reconfirms the presence of anisotropy in the material which may become more obvious for 

higher orders of strain. 

CONCLUSION 

The strain matrices developed from this method were qualitatively accurate.  The micro-

strains shown in Figure 12 responded to the macro-strains as expected.  Furthermore, the strain 

equations and method of implementation were valid. Further quantitative analysis revealed a 

directional dependence for strain in the sample.  This was found both in the difference between 

strain in the x and z direction as well as the hkl dependence in the hydrostatic strain. Looking at 

the Fourier fit, the deviation between the original data and the fitted data appears to increase with 

strain, shown in Figure 15.  However, this deviation, although small, is not symmetric about χ.  

The Fourier fit used only has a single sine and cosine which fits the data to be symmetric with 

respect to χ, which is fine for a uniaxial case such as in this paper.  However, if a shear strain was 

introduced that would result in an unsymmetrical arch.  Thus, either the mechanism used to exert 

a force on the nitinol sample was not ideal in introducing a pure axially axial force.  The Fourier 

Fit needs to be more complex in order to fit data with shear strain.  In addition, future research 

can: determine how much information from the diffraction image is needed to extract the strain 

tensor, experiment with other types of loads, and look at higher levels of strain in relation to the 

other micromechanical properties.  In order to increase the precision of the results, future 

research should run a new calibration for each level of strain and extract more χ rings per 

diffraction image as this paper only deals with three of an available five. 
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Table 1: Peak number, Location in Q space, and corresponding d spacing for each peak extracted from 
Nitinol diffraction patterns. 
 
 
 
a0 = same as [a0] mentioned in text = 29.48578921444401 nm-1 

Calibrant = [the original data – a0] or [the unstrained data– a0] mentioned in text, a vector of 

positions in Q-space given in nm-1 

d0 = 2.130919834461030 Å 

Qstrain = data for the strained case, a vector of positions in Q-space given in nm-1 

Intensity = intensity of the peak 

χ = angle relating the diffraction pattern to physical space 

Qfit = A vector of calibrated positions in Q-space given in nm-1 
Table 2: Definitions for the calibrated fit, referred to as Fourier fit. 
 
 

1094.32147865-
4650.146244206485.39204211
7320.041447735500.00016054- 8542.57540972-

10 3 ×= −ε  

2503590.03414170
8266910.017376578184190.03379031
6454250.025675510108970.02584271  5511420.23167877

10 3 ×= −esds  

Table 3: Strain tensor and estimated standard deviations for relative macro-strain level of 350.  This strain 
tensor is given in the sample space coordinate system. 

Peak Number Location in Q space (unstrained) d0 
110 29.48578921444401 nm-1 2.130919834461030 Å
200 41.73517701432516 nm-1 1.505489075803596 Å 
211 51.09763355587002 nm-1 1.229643110636340 Å
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Figure 1: Visualization of Bragg’s 
Law.   Incident beam reflects off of 
atoms by a scattering angle dictated 
by Bragg’s equation. 

d

Incident 
beam 

Reflected 
beam 

Figure 2: Bragg’s Law in transmission geometry.  Q vector denotes
the change in momentum of the X-ray beam (Io) and points along 
the d spacing between atoms.  Angles χ and ω are used to locate Q.

Figure 3: A simplified diffraction pattern.  The 
bright circles are χ rings, where χ is the angle from 
the vertical. 

Figure 4: An unstrained diffraction pattern with 
circular χ rings.  Each ring is referenced by its 
Miller index, some numbers hkl. 
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STRAIN 

STRAIN 

  Figure 5: Caked images, 
straightened χ rings, of 
Nitinol in the Austenite 
phase.  Each successive 
image is under a different 
level of macro-strain.  
Notice that the χ ring 
progressed from a straight 
line to an arch of greater 
eccentricity and eventually 
begins to disappear.  In 
this process the material is 
deforming elastically and 
then undergoing a phase 
transformation. 

Figure 6: Caked images, 
straightened χ rings, of 
nitinol in the martensite 
phase.  Each successive 
image is under a different 
level of macro-strain.  
Notice the change in 
texture, or twining, as 
indicated by the intensity 
poles.  As strain increases 
more, the peaks start to 
widen, an indication of 
plastic deformation. 
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Figure 7: The rig for inducing strain in the sample.  The thin film, in red, was pulled out by the moveable 
crosshead [4]. 
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 Unstrained  Relative  

macro-strain of 350 
Relative  
macro-strain of 470 

Original diffraction 
images from the 
detector.  The black 
trim is a result of 
shadowing from the 
force inducing 
mechanism in Figure 
7. 

   

110 Peak (Q29) 
All shown at same 
intensity scale 
 

   

200 peak (Q42)    

211 Peak (Q51)   
The gap of missing 
information is from 
shadowing created 
by the force inducing 
mechanism. 

   

Figure 8: Each row shows the progression of an intensity peak with strain.  Each column shows the 
different intensity peaks at that level of strain. 
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Unstrained 110 Peak 
 
Location in Q space: 
Q = 29.48578921444401 nm-1 
 
Corresponding ω: 
ω = 0.23045701838923 rad 
 
Unstrained d0: 
d0 = 2.130919834461030 Å 

Figure 9: The process of finding d0 for the 110 peak.  The original data, top, has some unexpected 
deviations which are attributed to the caking process.  Fitting this data allows for a calibration factor 
to be extracted, which has been applied to the unstrained case, shown at the bottom. 
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LOAD
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Io 
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x 
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z  

Figure 10: Sample geometry.  Angles χ and ω are the same from Figure 2.  
The force is in the y direction. 
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Figure 11: The Fourier fit for each peak (110, 200, and 211) at a relative macro-strain of 350 
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Figure 12: Strain in the direction of load, the cyan line, increases proportionally with the load.  Strain in the 
orthogonal directions is negative and proportional to the load as well.  Shear strain is zero for all load levels. 
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Figure 13.a Figure 13.d 

Figure 13.b 

Figure 13.c 

Figure 13.e 

Figure 13.e 
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Figure 14: Hydrostatic strain is dependent on hkl. 
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Figure 15: The Fourier fit used to smooth the data 
we appropriate for small levels of strain, but had 
trouble fitting the data for higher strain values. 


