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[. INTRODUCTION

Breast mass segmentation is arguably one of the most difficult tasks in the development of
Computer-Aided Diagnostic (CAD,) systems. The main objective of this research is to develop an image
segmentation method for mammograms that contain dense tissue as well as for mammograms that contain
dense/fatty tissue, while its second objective is to incorporate the segmentation method into a CAD,
system. Specifically, we intended to do the following: (1) To develop an automatic image segmentation
scheme to separate clinically occult breast masses from surrounding tissue (2) To evaluate the method by
comparing the ROIs with mammographers’ drawings and (3) To separate masses from glandular tissues
using the Multiple Circular Path Convolution Neural Network (MCPCNN) classifier. The following is a
summary of the PI’s research and training activities during the grant period.

II. BODY

During the past 36 months the PI has tested and validated an automatic image segmentation
algorithm on a set of dense breast mass cases. This section of the final summary provides a detailed
description of the research and training tasks on a year-by-year basis. Part A summarizes the activities
that occurred during months 1-12, Part B summarizes the activities that occurred during months 13-24,
and Part C summarizes the activities that occurred during months 25-36.

A. Year 1, Months 1-12

During the first year, the PI performed the initial database collection, coordinated ground truth
tracing sessions with two expert radiologists, attended medical image conferences, attended local medical
image meetings, and team taught an imaging technologies course at the Catholic University of America.

A.1 Key Research Accomplishments — Year |
1. Expanded database to 300 images collected from Digital Database for Screening Mammography
(DDSM)
¢ (Cases have American College of Radiology (ACR) density ratings of 3 and 4
¢ Collected Georgetown University Medical Center (GUMC) data for expansion of current database

2. Tested current segmentation method on 198 images

3. Conducted expert radiologist trace sessions with first radiologist
o first radiologist traced 298 masses
¢ second radiologist has agreed to trace masses

A.2 Reportable Outcomes — Year |

Manuscripts

1. Published manuscript in proceedings of International Symposium on Biomedical Imaging (ISBI)
2004 meeting: “Likelihood Function Analysis for Segmentation of Mammographic Masses for
Various Margin Groups”

2. Submitted manuscript to Journal of Medical Physics: “Steepest changes of a probability-based cost
function for delineation of mammographic masses: A validation study ’manuscript is currently
undergoing 2™ review by editors

Oral Presentation
“Likelihood Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups”,
ISBI Meeting, Arlington, VA




Technical Development Activities:
1. Attended two cancer imaging workshops conducted by the Washington Academy of Biomedical
Engineering:
e 11/12/03: “Cancer Imaging for the Operating Room of 2020” (Georgetown University)
e 9/29/03: "Individualized Treatment Using Pharmaco-Genomics & Functional
Imaging" (George Washington University)
2. Attended weekly cancer workshops conducted by the Howard University Cancer Center (made oral
presentation in December of 2003)
Attended International Symposium on Biomedical Imaging (ISBI) 2004 meeting
Attended SPIE Medical Imaging Meeting
5. Taught “Computer-Aided Diagnosis” portion of “Introduction to Imaging Technologies” course, The
Catholic University of America, course number ENGRS552

bl

B. Year 2, Months 13-24

During the second year the PI has tested and validated an automatic image segmentation algorithm
on a set of dense breast mass cases for both non-processed and background trend corrected images. The
following is a detailed description of the experiments and is divided into the following sections (B.1)
Experiments: (B.1.1) Segmentation Method — an overview of the automated image segmentation method
(please see Appendix for detailed description of method) (B.1.2) Database and Experiments — description
of masses used and experiments performed (B.1.3) Results — statistical and graphical results of the
experiment and (B.1.4) Discussion of Results; (B.2) Key Research Accomplishments; and (B.3)
Reportable Outcomes.

B.1 Experiments
B.1.1 Segmentation Method

The segmentation method used in this study evaluates the steepest changes within a probabilistic cost
function in an effort to determine the computer segmented contour which is most closely correlated with
expert radiologist manual traces. It segments breast masses by combining region growing with the
analysis of a probability-based function [1]. Once a set of contours is grown using region growing the
probability density functions inside and outside the contours are found. A function, which is the
logarithm of these probability density functions, is then constructed. The function is then searched for
possible steep change locations, i.e., sharp changes in the logarithm values, and the intensities
corresponding to those locations are likely to produce contours which are highly correlated with expert
traces. A detailed description of the method is provided in the manuscripts located in the appendix of this
document [2, 3].

B.1.2 Database and Experiments

Three-hundred forty-two cases have been selected from the University of South Florida’s Digital
Database for Screening Mammography (DDSM) [2], where 175 of these cases are cancerous masses and
167 of the cases are benign masses. The densities of all cases from the DDSM have been rated according
to the American College of Radiology’s (ACR) density scale, which ranges from 1-4. A breast containing
a great deal of fatty tissue would receive a rating of 1 and a breast containing a great deal of dense tissue
would receive a rating of 4. The current database contains 242 cases with a density rating of 3 and 100
cases with a density rating of 4. In the current experiment the cost likelihood function threshold values
(TV, and TV,) were set to 1800 and 1300, respectively. Approximately 300 of the cases were manually
traced by two expert radiologists. All cases have been validated by both radiologists, where the validation
measures are overlap, accuracy, sensitivity, specificity, Dice Similarity Index (DSI), and kappa statistics
as described in the literature [3,4] and manuscripts [5-7]. Initially, the images were not pre-processed in
order to preserve the true mass borders. In hopes of attaining higher validation statistical values, the PI
applied the background trend correction technique to the entire dataset and ran a second segmentation
experiment on the pre-processed images.



B.1.3. Results
Statistical Results

Tables 1-4 contain p-values for Analysis of Variance (ANOVA) tests, in which a set of intra-
observer experiments were performed to determine the value of pre-processing on segmentation results.
Specifically, the PI tested non-processed versus pre-processed datasets for all statistical measures, and
both expert radiologists. A table entry containing “NS” implies that there were no statistically significant
differences for a particular test. The computer produces the three traces which it feels are the closest
contours to those traced by the expert radiologists, so the results shown in the table contain results for
tests for all three groups. Further, the maximum values of statistical measures for a subset of cancer cases
were found to find the proximity between the optimal region-growing trace as determined by the

computer and the region-growing trace with the highest possible value for a particular measure.

Table 1 — ANOVA test P-values for Intra-observer Experiment:

Non-Processed vs. Pre-Processed Cancer Cases (Expert A)

[Overlap |Accuracy [Sensitivity [Specificity |DSI [kappa
Group | Trace p.2x10° NS 1.4x10°  B.4x10°  J.5x107 [1.4x10°
Group 2 Trace K.0x10™ NS 1.3x107  B.8x10°  [9.4x10” [3.5x10°
Group 3 Trace W.3x10° NS 1.5x10°  R.7x10*  J1.1x107 p.8x10”
Table 2 — ANOVA test P-values for Intra-observer Experiment:
Non-Processed vs. Pre-Processed Benign Cases (Expert A)
[Overlap  JAccuracy [Sensitivity [Specificity JDSI [kappa
Group 1 Trace [1.37x10° NS 2.0x10° NS 3.8x107 .9x10~
Group 2 Trace 2.2x10° NS 1.6x10°  PB.4x10®  KB.9x10* [1.5x107
Group 3 Trace |NS NS 5.1x10°  K.6x10° NS NS
Table 3 — ANOVA test P-values for Intra-observer Experiment:
Non-Processed vs. Pre-Processed Cancer Cases (Expert B)
[Overlap [Accuracy [Sensitivity [Specificity |DSI [kappa
Group 1 Trace [3.5x10° NS D 0x10°  J1.2x10°  Jl.1x107 |2.8x10°
Group 2 Trace NS NS 1.3x107  J6.4x10°  [3.2x107 NS
Group 3 Trace NS D 2x10° [7.0x10"  PB.7x10° NS NS
Table 4 — ANOVA test P-values for Intra-observer Experiment:
Non-Processed vs. Pre-Processed Benign Cases (Expert B)
[Overlap JAccuracy [Sensitivity [Specificity [DSI [kappa
Group | Trace [9.8x107 NS 1.7x10° NS D.3x107 [9.0x10°
Group 2 Trace |1.8x10”° NS 4. 1x10°  |1.3x10* PB.ox10® J6.8x107
Group 3 Trace NS NS 3.7x107  J1.2x107 NS NS

Table 5 — Mean Statistical Values Non-Processed

Cases: Expert A, Cancer Cases

[Overlap [Accuracy [Sensitivity [Specificity |DSI [kappa
Group I Trace 0.18 0.72 0.18 1.0) 0.27 0.22
Group 2 Trace 0.34 0.76 0.37 0.997 0.47 0.39
Group 3 Trace 0.3 0.76 0.46 0.95 0.51 0.40




Table 6 — Mean Statistical Values Non-Processed Cases: Expert B, Cancer Cases

Overlap | Accuracy | Sensitivity | Specificity | DSI | kappa
Group 1 Trace 0.36 0.81 0.39 0971 0.50 0.42
Group 2 Trace 0.50 0.84 0.63 092 | 0.64 0.54
Group 3 Trace 0.47 0.81 0.70 0.86 | 0.62 0.50

Table 7 — Mean Statistical Values Pre-Processed Cases: Expert A, Cancer Cases

Overlap | Accuracy | Sensitivity | Specificity | DSI | kappa
Group 1 Trace 0.17 0.72 0.18 1.0| 027 0.22
Group 2 Trace 0.34 0.76 0.37 099 | 047 0.39
Group 3 Trace 0.36 0.75 0.46 095] 051 0.40

Table 8 — Mean Statistical Values Pre-Processed Cases: Expert B, Cancer Cases

Overlap | Accuracy | Sensitivity | Specificity | DSI | kappa
Group 1 Trace 0.25 0.83 0.26 1.0 037 0.33
Group 2 Trace 0.45 0.86 0.49 099 | 0.57 0.53
Group 3 Trace 0.43 0.84 0.59 0.94] 0.58 0.51

Table 9 — Mean Values for Contour Yielding Maximum Value vs. Computer Choice Contours

Mean Mean Group Mean Mean
Maximum I Overlap Group 2 Group 3
Overlap Value Overlap Overlap
Value Value Value
Expert A 0.62 0.28 0.45 0.48
Expert B 0.60 0.47 0.50 0.36




Visual Results
Figures 1-4 show segmentation results for both the pre-processed and non-processed mass cases

*sis o

RO1 Group | Group2 Group3 ExpertA ExpertB
Figure 1b — Cropped original With Computer Results (Non-Processed Image)

Figure lc — Cropped original With Computer
Results (Pre-Processed Image)

Figure la — Original Image
(Cancer Case, Density=3)

Figure 1: Computer Segmentation Results for a Cancerous Mass

ROI1 Group | Group2 Group3 ExpertA ExpertB
Figure 2b — Cropped original With Computer Results (Non-Processed Image)

Figure 2a —Or1ginal ‘Imagé Figure 2¢ — Cropped original With omuter
(Cancer Case, Density=3) Results (Pre-Processed Image)

Figure 2: Computer Segmentation Results for a Cancerous Mass



Group2 Group3 Expert A ExpertB
Figure 3b — Cropped original With Computer Results (Non-Processed Image)

ROI1 Group | Group2 Group 3
Figure 3¢ — Cropped original With Computer
Results (Pre-Processed Image)

Figure 3a — Original Image
Benign Case, Density=3)

Figure 3: Computer Segmentation Results for a Benign Mass

ROI Group | Goup 2  QGroup3 Expert A ExpertB
Figure 4b — Cropped original With Computer Results (Non-Processed Image)

Group Grou 3

ROI Group 1

Figure 4c — Cropped original With Computer
Results (Pre-Processed Image)

Figure 4a — Original Image
Benign Case, Density=3)

Figure 4: Computer Segmentation Results for a Benign Mass

B.1.4. Discussion of Results

It has been observed that the segmentation algorithm produces better results using the non-processed
images as inputs rather than using the pre-processed images as inputs, under the given set of parameters.
As stated previously, the intensity corresponding to the location where the steep likelihood changes occur
is likely to produce the contour that matches closely with the expert radiologist traces. The steep change
location is determined by a set of threshold values determined by the user. The background trend
correction process generally causes dark areas in the image to become darker, therefore, the contrast
between the mass and background is higher for some cases. This, in turn creates more steep changes in
the likelihood functions, which may have formerly been smooth. Therefore, the computer is likely to
choose higher intensity values, consequently the contours will be small.

The ANOVA test results show that there were statistically significant differences between the non-
processed and pre-processed images for both expert radiologists, for most statistics, where the mean
values were higher for non-processed vs. pre-processed images for most statistics. These results imply



that it may not be necessary to pre-process the images, but rather to use different parameters for the
automated selection process of finding optimal contours. Preliminary work has been done to determine
how close the statistical values of the computer chosen contours are to those of the contours which obtain
the greatest statistical values (see Table 9).

B.2. Key Research Accomplishments

MBS

Completed expert radiologist tracing of 300 masses

Tested the efficacy of background trend correction upon segmentation improvement
Added Dice Similarity Index (DSI) and kappa statistics as validation measures
Validated masses using all validation measures

Reviewed literature concerning inter-observer variability

B.3 Reportable Outcomes
Manuscripts:

L.

L. Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Steepest
changes of a probability-based cost function for delineation of mammographic masses: A validation
study,” J. of Medical Physics, vol. 31, no. 10, 2004, pp. 2796-2810.

L. Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Steepest
changes of a probability-based cost function for delineation of mammographic masses: A validation
study,” Virtual Journal of Biophysics, Vol. 8, Issue 7, Oct. 1, 2004, http://www.vibio.org/bio/
(selected across several medical and biophysics journals).

L. Kinnard, S.-C. B. Lo, E. Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, “Mass
Segmentation of Dense Breasts on Digitized Mammograms: Analysis of probability-based function,”
Medical Imaging 2005: Image Processing, February, 2005, Proceedings of SPIE, vol. 5747, pp.
1813-1823.

Poster Presentation:

L.

L. Kinnard, S.-C. B. Lo, E. Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, “Mass
Segmentation of Dense Breasts on Digitized Mammograms: Analysis of probability-based function,”
Medical Imaging 2005: Image Processing, February, 2005, Proceedings of SPIE, vol. 5747, pp.
1813-1823.

Oral Presentations:

L.

2.

“The Post-Doctoral Experience: A Year in Review”, Preparing for the Postdoctoral Institute,
August, 2004, Howard University and The University of Texas at El Paso.

“Computer-Aided Diagnosis and Image Segmentation of Mammographic Masses”, Symposium on
Transiational Research for Cancer Detection, Diagnosis, Prevention, and Treatment, The Howard
University Cancer Center and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins,
November, 2004.

Technical Development Activities:

L.

98]
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Attended meetings and one workshop of the Washington Academy of Biomedical Engineering
(WABME)

Attended cancer workshops conducted by the Howard University Cancer Center

Attended SPIE Medical Imaging Meeting (February, 2005, San Diego, CA)

Served as the Faculty Retreat Committee Chair, for which the theme was a grant proposal writing
contest. The PI also served as the PI of her group, and the group placed 2™ out of eight groups.



C. Year 3 — Months 25-36

During the final year of the grant period, the PI performed several dense breast segmentation
experiments, attended several conferences and meetings, gave oral presentations to graduate students, and
interviewed for various research and teaching positions.  Section (C.1.1) describes the experiments
performed during the final year, section (C.1.2) gives results for these experiments, section (C.1.3)
provides a discussion of results, section (C.2) lists key research accomplishments, and section (C.3) lists
reportable outcomes. The segmentation algorithm and image database have been described in sections
B.1.1-B.1.2.

C.1. Experiments
C.1.1. Experiment Descriptions

For all tables in this section, a table entry containing the abbreviation “NS” means “No
Significant” difference, so there was no statistically significant difference for a particular test. All tables
contain intra-observer experiments, or, comparisons between the computer traces and two expert
radiologists, namely, Expert A and Expert B. The probabilistic-likelihood method narrows a set of 200-
500 traces to a set of three possible choices that will best match the radiologist traces, namely, group 1,
group 2, and group 3 traces. Typically, the group 1 trace encapsulates the mass body, the group 2 trace
encapsulates the mass body + the mass borders that extend into surrounding fibroglandular tissue, and the
group 3 trace encapsulates the mass body + the mass borders that extend into surrounding fibroglandular
tissue + additional tissue that may not belong to the mass.

Experiment 1

During the second year of the grant period the PI began an experiment which compared the
segmented results to the maximum achievable values for each validation statistic, namely, the overlap,
accuracy, sensitivity, specificity, and Dice Similarity Index (DSI) statistics. Tables 10-17 contain results
for these experiments.

Experiment 2

In previous studies the PI and colleagues determined that the computer algorithm was capable of
narrowing a set of 200-500 possible contour traces to the trace which would closely match manual ground
truth traces provided by expert radiologists. In the case of dense breast masses this optimal trace is more
difficult to determine due to the masses’ unclear borders, therefore the set of 200-500 possible contour
traces were narrowed to two possible optimal traces. The PI added yet a third expert radiologist trace to
see if this person could serve as a “tie-breaker”, and would therefore strongly agree with Expert A or
Expert B. The details of this experiment can be found in the PI's submission to the ISBI 2006
conference, located in the appendix of this document.

Experiment 3

In a third experiment the PI compared the probabilistic-likelihood method (the algorithm used
throughout the research study) to a Gradient Vector Flow (GVF) algorithm developed by a research group
at The Johns Hopkins University. The details of the GVF algorithm are described in a summary which is
a portion of a manuscript comparing the two algorithms to be submitted to the Journal of Physics and
Medicine in Biology. Tables 18-25 contain the results of this third experiment.

11



C.1.2. Results

Maximum Value Experiment Results
Cancerous Mass Case Results

Table 10 — ANOVA test P-values:

Max Values vs. Computer Choice Cancer Cases (Expert A)

Overlap | Accuracy | Sensitivity | Specificity | DSI
Group | Trace | 5.0x1077 | 5.3x10™ [ 4.1x10°" | NS 2.3x107"
Group 2 Trace | 4.6x10° | 4.4x107 | 1.4x10™ | NS 5.2x10°
Group 3 Trace | 2.7x10* | 2.1x10° | 7.4x10"" | 6.3x107 4.7x10™

Statistical Measurements (Expert A, Cancer Cases)

Table 11 — Mean Values of Computer Choice and Max Value

Overlap | Accuracy | Sensitivity | Specificity | DSI
Group 1 Trace 0.31 0.75 0.34 0.97 0.45
Group 2 Trace 0.49 0.80 0.58 0.93 0.63
Group 3 Trace 0.48 0.79 0.65 0.88 0.63
Max Values 0.60 0.88 0.92 0.97 0.73
Table 12 — ANOVA test P-values:
Max Values vs. Computer Choice Cancer Cases (Expert B)
Overlap | Accuracy | Sensitivity | Specificity | DSI
Group | Trace | 3.85x10° | 4.1x107% | 2.9x103° NS 9.3x10°%
Group 2 Trace NS NS 3.1x10714 NS NS
Group 3 Trace | 4.4x107° | 1.4x107 | 4.4x10!? 1.2x10* 6.9x107

Statistical Measurements (Expert B, Cancer Cases)

Table 13 — Mean Values of Computer Choice and Max Value

Overlap | Accuracy | Sensitivity | Specificity | DSI
Group 1 Trace 0.37 0.81 041 0.96 0.51
Group 2 Trace 0.52 0.85 0.65 0.92 0.67
Group 3 Trace 0.49 0.82 0.72 0.87 0.64
Max Values 0.60 0.88 0.95 0.96 0.73

Benign Mass Case Results

Table 14 — ANOVA test P-values:
Max Values vs. Computer Choice Benign Cases (Expert A)

Overlap | Accuracy | Sensitivity | Specificity | DSI
Group 1 Trace | 3.8x107"" |3.5x10° | 1.4x10°" | NS 1.2x107
Group 2 Trace | 1.0x107 [ 3.3x107 [9.6x10" | 1.6x107 7.5x10”
Group 3 Trace | 4.2x10™* | 1.8x10* | 1.9x10"° | 2.8x10” 2.8x10™

12



Table 15 — Mean Values of Computer Choice and Max Value
Statistical Measurements (Expert A, Benign Cases)

Overlap | Accuracy | Sensitivity | Specificity | DSI
Group 1 Trace 0.35 0.83 0.39 0.99 0.48
Group 2 Trace 0.50 0.86 0.62 0.95 0.64
Group 3 Trace 0.50 0.83 0.74 0.88 0.64
Max Values 0.60 0.90 0.97 0.99 0.74
Table 16 — ANOVA test P-values:
Max Values vs. Computer Choice Benign Cases (Expert B)
Overlap | Accuracy | Sensitivity | Specificity | DSI
Group | Trace | 3.8x10™"" |3.5x10° | 1.4x107° | NS 1.2x107
Group 2 Trace | 1.0x10” [ 3.8x10° [9.6x10" | 1.6x107 7.5x10”
Group 3 Trace | 4.2x10* | 1.8x10" | 1.7x10° 2.8x10” 2.8x10™

Table 17 — Mean Values of Computer Choice and Max Value
Statistical Measurements (Expert B, Benign Cases)

Overlap [ Accuracy | Sensitivity | Specificity [ DSI
Group 1 Trace 0.35 0.83 0.39 0.99 0.48
Group 2 Trace 0.50 0.86 0.62 0.95 0.64
Group 3 Trace 0.50 0.83 0.74 0.88 0.64
Max Values 0.60 0.90 0.97 0.99 0.74

Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results

Cancerous Mass Case Results

Table 18: Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Cancer Cases (Expert A)

Table 20:

13

Overlap Accuracy | Sensitivity | Specificity | DSI
GVF vs. group 1 NS NS NS NS NS
GVF vs. group 2 | 5.92x10™"! 0.02 1.72x107"% | 1.09x10" | 4.1x10"°
GVF vs. group 3 | 5.37x107"° 0.02 9.72x107% | 5.17x107"* | 8.59x10™"

Table 19: Mean Values of Statistical Measurements (Expert A, Cancer Cases)

Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF 0.27 0.70 0.29 0.99 0.41
group | 0.27 0.70 0.29 0.98 0.40
group 2 0.45 0.76 0.52 0.94 0.59
group 3 0.46 0.75 0.60 0.89 0.62

Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Cancer Cases (Expert B)

Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF vs. group 1 NS NS NS NS NS
GVE vs. group 2 | 3.28x10"° NS 328x10" | 8.94x10% | 7.07x10™
GVE vs. group 3 | 3.04x10" NS 1.43x10% | 8.85x10™° [ 1.1x10"




Table 21: Mean Values of Statistical Measurements (Expert B, Cancer Cases)

Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF 0.35 0.82 0.38 0.98 0.50
group | 0.36 0.81 0.39 0.97 0.50
group 2 0.51 0.84 0.64 0.91 0.65
group 3 0.48 0.81 0.71 0.86 0.63

Benign Mass Case Results

Table 22: Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Benign Cases (Expert A)
Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF vs. group 1 NS NS NS NS NS
GVE vs. group 2 | 2.23x10"” NS 1.05x10” 1.7x10% | 5.03x10™
GVE vs. group 3 | 6.6x10" NS 1.48x107% | 8.62x1077 | 3.73x10™

Table 23: Mean Values of Statistical Measurements (Expert A, Benign Cases)

Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF 0.34 0.82 0.37 0.99 0.49
group | 0.32 0.81 0.34 0.99 0.45
group 2 0.48 0.84 0.57 0.96 0.61
group 3 0.47 0.80 0.71 0.86 0.61
Table 24: Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Benign Cases (Expert B)
Overlap Accuracy | Sensitivity | Specificity | DSI
GVF vs. group 1 NS NS NS NS NS
GVE vs. group 2 | 4.29x10” NS 475x10™ | 6.84x10° | 1.84x10™
GVE vs. group 3 | 1.48x10™” 0.02 593107 | 4.97x10™ | 6.93x10™

Table 25: Mean Values of Statistical Measurements (Expert B, Benign Cases)

Overlap | Accuracy | Sensitivity | Specificity | DSI
GVF 0.37 0.85 0.41 0.99 0.52
group | 0.35 0.84 0.37 0.99 0.49
group 2 0.52 0.87 0.63 0.99 0.65
group 3 0.48 0.82 0.77 0.85 0.62

C.1.3 Discussion of Results

For the maximum value experiment (Experiment 1) there were statistically significant differences
for Expert A for nearly all statistical measurements, and for all three group traces. This means that
according to Expert A, there is more work that needs to be done. This was the case for both cancerous
and benign masses. However for Expert B there were statistically significant differences for the group |
and group 3 traces, but only one statistically significant difference (occurred for sensitivity) for the group
2 trace. This result is encouraging because it reveals that for the group 2 trace, while the values of the
statistical measurements are lower than the maximum achievable values, the values are not significantly

lower than the maximum achievable values. This was the case for the cancerous masses but not for the
benign masses.
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For the Probablistic-Likelihood vs. GVF experiment there were no statistically significant
differences between the GVF trace and the group 1 trace for all statistical measurements. This is an
expected result because the GVF traces had a tendency to be small, and the group 1 traces were also small
because they typically encapsulated the mass body, which is also a small area. This result was consistent
between observers and for both cancerous and benign masses. There were statistically significant
differences for the group 2 traces vs. GVF traces, and for the group 3 traces vs. GVF traces for all
statistical measurements except for the accuracy measurement. The mean values for the probabilistic-
likelihood method were consistently higher than those of the GVF method.

C.2 Key Research Accomplishments

1. Compared probabilistic-likelihood trace choices to traces for which the statistical measurements had
maximum values

2. Added a third observer to attempt to find a consensus among observers

3. Compared probabilistic-likelihood algorithm to GVF algorithm

4. Performed study which analyzed inter-observer variability, using the STAPLE algorithm (results do
not appear in this document, but will appear in the manuscript)

C.3 Reportable Outcomes

Conferences and Meetings:

1. Intercultural Cancer Council Annual Meeting, April 2006

Southern Regional Education Board (SREB) Compact for Faculty Diversity, October 2005
134™ Meeting of the Cancer Advisory Board, June 2005

Department Of Defense CDMRP-Howard University Reverse Site Visit Meeting, April 2006

hal ol

Technical and Professional Development Activities:

1. Associate Editor (Referee) for Journal of Medical Physics submission

2. Served on National Science Foundation (NSF) grant panel

3. Attended Georgetown University Post-doctoral meeting: Finding, Writing, and Husbanding Research
Grants, by Bill Sansalone

4. Taught Computer Aided Detection and Diagnosis portion of “Biomedical Device Discovery &
Development” course taught at the Food and Drug Administration (FDA) Staff College,
Gaithersburg, MD, Fall, 2005.

5. Served as a judge for the University of Maryland College Park (UMCP) - University of Maryland
Baltimore County (UMBC) AGEP conference

Poster Presentation:

“Mass Segmentation on Dense Breasts on Digitized Mammograms”, L. Kinnard, S.-C. B. Lo, E.
Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, Department of Defense Era-Of-Hope
Meeting, June, 2005, Philadelphia, PA.

Oral Presentations:

1. “Key Components for a Successful Post-Doc”, Preparing for the Postdoctoral Institute, August,
2005, Howard University and The University of Texas at El Paso.

2. “Educational Paths and Decisions: The Road Less Traveled”, The University Of lowa College of
Engineering’s Ethnic Inclusion Seminar Series, November, 2005

3. “Educational Paths and Decisions: The Road Less Traveled”, North Carolina State University,
Department of Statistics, February, 2006
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Grant Proposals Submitted:

1. American Cancer Society Mentored Research Scholar Grant in Applied and Clinical Research:
Research Proposals Directed at Poor and Underserved Populations
o Title: “Breast Cancer Diagnostic Image Querying System for Minority Women”
o Initial submission date: 4/1/05; re-submission date 10/15/05

2. National Institutes of Health (NIH) National Cancer Institute (NCI) Mentored Career Development
Award for Underrepresented Minorities (KO1)
o Title: “A Content-Based Image Retrieval System for Breast Masses: General and Minority

Populations™

o Initial submission date: 6/1/05

3. NIH Cancer Bioinformatics Grid (CaBIG) Imaging Group: co-wrote this proposal with colleagues;
proposal was accepted

Interviews:

1. U.S. Patent and Trademark Office (CAD group): Patent Investigator — received an offer

2. Philips (CAD group): Research and Development Engineer

3. Food and Drug Administration (FDA)/NIH: Research Fellow - received and accepted an offer

o This position is a joint relationship between The FDA’s Center for Devices and Radiological

Health (CDRH) Division of Imaging and Applied Mathematics (DIAM) and the NIH’s National
Institute of Biomedical Imaging and Bioengineering (NIBIB) and the NCI. The PI will study the
effect of drug treatment upon lung cancer tumors using statistical area measurements.
Furthermore the PI hopes to continue work in Breast CAD because there are other researchers
within the DIAM group who have ongoing projects in this area.

4. Temple University: Assistant Professor

5. Morgan State University: Assistant Professor

Manuscripts:
The Probabilistic Likelihood and Gradient Vector Flow Algorithms: A Comparison Study for Dense

Breast Mass Segmentation (In preparation for submission to Physics and Medicine in Biology)

HI. CONCLUSIONS

The initial research question for the maximum value experiment was: Are the computer choice
statistical values significantly lower than the maximum achievable values given by region growing?
According to Expert B, the answer is yes for group 1 and 3 traces but no for group 2 trace, for cancer
cases. This result is encouraging because it means that it may possible to conclude that the group 2 trace
is the optimal choice of the possible 200-500 contour choices per mass. The initial research question for
the probabilistic-likelihood vs. GVF experiment was: Are there statistically significant differences
between the two methods for a set of statistical measurements, and if so, which method achieves better
results? We proved with statistical significance that for the current data set the probabilistic-likelihood
method performed better. The GVF method worked very well for contours that were well-defined,
however in our experiment it encountered difficulties for masses with ill-defined borders.

During this research phase of the award the PI gained a great appreciation for the difficulty of
segmenting objects with ill-defined borders, and the importance of proper segmentation in the
development of Computer-Aided Diagnostic systems. Since shape is such an important factor in
diagnostic radiology proper segmentation is of paramount importance. During the technical and
professional development phase of the award the PI gained immeasurable experience by attending
meetings in her research area, taking on leadership roles in two activities, engaging in oral presentations
describing her path through graduate school and through her post-doctoral award, reviewing grants and
journal submissions, learning proper interviewing techniques, and teaching Computer-Aided Diagnostic
techniques to audiences with a wide range of educational backgrounds. During the interview process the
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post-doctoral experience was well-received by companies and universities alike, and the PI is greatly
appreciative to have been given this opportunity. Fortunately, this award enabled her to continue work in
the medical imaging field and to therefore continue the fight to reduce the cancer mortality rates all over
the world.
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V. APPENDIX

The appendix of this document contains mansuscripts written during the award period, the manuscript
abstract for the DOD Era-Of-Hope meeting 2005, and a summary of the GVF algorithm.
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MASS SEGMENTATION OF DENSE BREASTS ON DIGITIZED MAMMOGRAMS

L. Kinnardl’z, S.-C. B. Loz, E. Duckett:’, E. Makariouz, M.T. Freedmanz, and M. Chouikha'
'Department of Electrical and Computer Engineering, Howard University, Washington, D.C.
*ISIS Center, Georgetown University Medical Center, Washington, D.C.

’Advanced Radiology, Glen Burnie, MD
e-mail: kinnard@isis.imac.georgetown.edu

In this study a segmentation algorithm based on steepest changes of a probabilistic cost function is
tested on non-processed and pre-processed dense breast images in an attempt to determine the
efficacy of pre-processing for dense breast masses. The pre-processing method is a background
trend correction (BTC) technique.

The segmentation method used in this study evaluates the steepest changes within a probabilistic
cost function in an effort to determine the computer segmented contour which is most closely
correlated with expert radiologist manual traces. This method segments breast masses by
combining region growing with probability-based function analysis. Based on this analysis the
three best contours are chosen and a final selection is made from these three choices. Typically,
the Group 1 trace encapsulates the central portion of the mass, the Group 2 trace encapsulates the
central mass and borders extending into surrounding tissue (e.g. — spiculations), and the Group 3
trace encapsulates the area covered by the Group 2 trace and surrounding fibroglandular tissue.
The BTC method alters intensity values of the Region of Interest (ROI) using a polynomial fitting
function. This method was tested on 71 dense cancerous masses. The computer-segmented
results were manually traced by two expert radiologists for validation purposes. The overlap (O),
accuracy (A), sensitivity (SE), specificity (SP), and Dice Similarity Coefficient (DSC) statistics
were calculated, where a DSC value greater than 0.7 implies strong agreement between the
computer segmented result and the expert radiologist trace. Tables 1-2 contain mean values for
all statistics, and Figures 1-2 show computer segmented results.

Generally, the BTC method worsened the computer segmented results for Experts A and B
regarding overlap, DSC, and sensitivity statistics. These results conflict with visual inspection of
the BTC processed ROI’s because this method sometimes creates a crater-like effect around the
mass borders in areas where it was formerly difficult to separate mass borders from surrounding
tissue. Further, some light areas are lightened by background trend correction which causes
areas outside the mass to be joined with areas inside the mass. This phenomenon subsequently
causes the region to grow too much. We feel that the computer-segmentation results can be
improved by changing the parameters used to determine the intensities that will produce the
contours that best match expert radiologist traces. The purpose of this work is to facilitate breast
cancer screening using digitally automated segmentation method capable of locating mass borders
embedded in dense breasts.

Table 1 — Statistical Results for Non-Processed and Processed ROI’s (Expert A)
Expert A (non-processed ROI) Expert A (BTC processed ROI)
(0 A SE | SP | DSC (0 A SE | SP | DSC
Group 1 0.3] 0.73] 0.32] 0.98 0.44 0.18] 0.71| 0.19 1 0.28
Group 2 0.46| 0.78 0.56| 0.93 0.6 0.34] 0.76| 0.36] 0.99 0.46
Group 3 0.47| 0.77| 0.63] 0.88 0.64 0.34] 0.75| 0.44| 0095 0.49




Table 2 — Statistical Results for Non-Processed and Processed ROI’s (Expert B)

Expert A (non-processed ROI) Expert A (BTC processed ROI)

(0] A SE | SP | DSC (0] A SE | SP | DSC
Group | 038 0.82 04| 097 0.52 0.26/ 0.83] 0.27 1 0.38
Group 2 0.52| 0.84] 0.65] 0.91 0.66 0.44 0.86] 0.49| 0.99 0.57
Group 3 048 0.81| 0.72] 0.86 0.63 0.41| 0.84] 0.57| 094 0.57

Non-processed

ROI

Group 1 result

Group 1 result

Group 2 result

Group 2 result

Group 3 result

Expert A trace

Expert B trace

Group 3 result

Non-processed
ROI

BTC-processed
ROI

Group 1 result

ro I result

-

Group 2 result

Group 2 result

Group 3 result

— A Cancerous Mass Showing Improved Results Due to BTC Processing

Expert A trace

Expert B trace

ro3 result

Figure 2 — A Cancerous Mass Showing Worsened Results Due to BTC Processing

The U.S. Army Medical Research and Materiel Command under DAMD17-0301-0314 supported

this work.



CHAPTER 1. COMPARISON OF SEGMENTATION METHODS:
REGION-GROWING AND GRADIENT VECTOR FLOW

1.1. Introduction and Snake Background

Although our region-growing method achieved better results on the mixed density breast im-
ages, it appears to have worked reasonably well on the chosen set of dense breast images.
During several of my talks and interviews over the past few months I have often been asked if
the method had been compared to another method. In response to these requests I thought
that it would be worth our time to compare the computer results of our method to the results
of Gradient Vector Flow (GVF), a method implemented by Xu and Prince of Johns Hopkins
University. The GVF method is an extension of the snake method, developed by Kass and

Witkin. It differs from the snake because can grow into concave areas (see figure 1.1).

Figure 1.1: The Letter "U’ on a Homogeneous Background: (a)Traditional Snake (b)GVF Snake

If we define the snake as v(s) = (x(s),y(s)) where x(s) and y(s) are coordinates along

the contour s €=[0,1] (see figure 1.2).

The snake is defined as an energy minimizing spline, where the goal is to move it towards
the borders of a Region Of Interest (ROI) by minimizing the energy. Initially the snake is shaped

like a circle, is placed near the borders of the ROI and it shrinks (or expands) until it reaches
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Figure 1.2: Visual of Parametric Representation of Snake

the borders. The energy function to be minimized is defined as:

.

E:nake :/ E.Snake(l/’(SDdS

N (L1)

= / Ei’nt('l”(('q)) + EMnage(U(S)) + Emn('l,’(SDdS
0

where ), is the internal energy of the snake due to bending, a4 refers to image forces, and
F.., refers to external constraint forces.

Xu and Prince define typical external energies as:

Efl;n‘(qﬂy) = _’vj(qu)IQ (12>
E?;n‘(qﬂy) = —IV(GU(Q;‘?Z/) * ](7ﬂy)>’2 (13}

where I(x,y) is the image, G,(x,y) is a 2D Gaussian function, ¢ is standard deviation, and, ¥V

is the gradient operator.

1.2. Gradient Vector Flow Field

The authors defined an irrotational external force field called the gradient vector flow (GVF)
field. The GVF field points toward the object boundary when it is near to the boundary, but

varies slowly over homogeneous image regions. The process beginsg by defining an edge map,



f(z,y), which comes from the image I(x,y). It is stronger near edge boundaries and is defined
as:

S y) = —Ei(@,y) (1.4)

fori =1 or 2. The field V f has vectors pointing toward the edges, but V f = 0 in homogeneous
regions. The GVF field is defined as the vector field v(z,y) = (u(z,y), v(z,y)) that minimizes

the energy function:

b= // plug 4wy - vp ) + |V fPlo =V f*dedy (1.5)

where g is a regularization parameter that governs a tradeoff between the first and second

terms.
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LIKELTHOOD FUNCTION ANALYSIS FOR SEGMENTATION OF MAMMOGRAPHIC
MASSES FOR VARIOUS MARGIN GROUPS

Lisa Kinnard®"*, Shih-Chung B. Lo“, Erini Makariou®, Teresa Osicka™’, Paul Wang®,
Marthew T. Freedman®, Mohamed Chouikha”

“ISIS Center, Dept. of Radiology, Georgetown University Medical Center, Washington, D.C., USA
"Department of Electrical and Computer Engineering, Howard University, Washington, D.C., USA
‘Biomedical NMR Laboratory, Department of Radiology, Howard University, Washington, D.C.,
USA
“Department of Electrical Engineering and Computer Science, The Catholic University of America,
Washington DC, USA

ABSTRACT

The purpose of this work was to develop an automatic boundary
detection method for mammographic masses and to observe the
method’s performance on different four of the five margin groups
as defined by the ACR, namely, spiculated, ill-defined,
circumscribed, and obscured. The segmentation method utilized a
maximum likelihood steep change analysis technique that is
capable of delineating ill-defined borders of the masses. Previous
investigators have shown that the maximum likelihood function
can be utilized to determine the border of the mass body. The
method was tested on 122 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening
Mammography (DDSM). The segmentation results were
validated using overlap and accuracy statistics, where the gold
standards were manual traces provided by two expert
radiologists. We have concluded that the intensity threshold that
produces the best contour corresponds to a particular steep
change location within the likelihood function.

1. INTRODUCTION

In a CAD, system, segmentation is arguably one of the most
important aspects — particularly for masses — because strong
diagnostic predictors for masses are shape and margin type [2.9].
The margin of a mass is defined as the interface between the mass
and surrounding tissue [2]. Furthermore, breast masses can have
unclear borders and are sometimes obscured by glandular tissue
in mammograms. A spiculated mass consists of a central mass
body surrounded by fibrous projections, hence the resulting
stellate  shape. For the aforementioned reasons, proper
segmentation - to include the body and periphery - is extremely
important and is essential for the computer to analyze, and in
turn, determine the malignancy of the mass in mammographic
CAD; systems.

Over the years researchers have used many methods to segment
masses in mammograms. Petrick [7] et al. developed the Density
Weighted Contrast Enhancement (DWCE) method, in which
series of filters are applied to the image in an attempt to extract
masses. Comer et al. [1] segmented digitized mammograms into

0-7803-8388-5/04/$20.00 ©2004 IEEE

homogeneous texture regions by assigning each pixel to one of a
set of classes such that the number incorrectly classified pixels
was minimized via Maximum Likelihood (ML) analysis. Li [5]
developed a method that employs k-means classification to
classify pixels as belonging to the region of interest (ROI) or
background.

Kupinski and Giger developed a method [4], which uses ML
analysis to determine final segmentation. In their method, the
likelihood function is formed from likelihood values determined
by a set of image contours produced by the region growing
method. This method is a highly effective one that was also
implemented by Te Brake and Karssemeijer in their comparison
between the discrete dynamic contour model and the likelihood
method [9]. For this reason we chose to investigate its use as a
possible starting point from which a second method could be
developed. Consequently in our implementation of this work we
discovered an important result, i.e., the maximum likelihood steep
change. It appears that in many cases this method produces
contour choices that encapsulate important borders such as mass
spiculations and ill-defined borders.

2. METHODS

2.1 Initial Contours

As an initial segmentation step, we followed the overall region
similarity concept to aggregate the area of interest [1, 4]. Used
alone, a sequence of contours representing the mass is generated;
however, the computer is not able to choose the contour that is
most closely correlated with the experts’ delineations.
Furthermore, we have devised an ML function steep change
analysis method that chooses the best contour that delineates the
mass body as well as its extended borders, i.e., extensions into
spiculations and areas in which the borders are ill-defined or
obscured. This method is an extension of the method developed
by Kupinski and Giger [4] that uses ML function analysis to
select the contour which best represents the mass, as compared to
expert radiologist traces. We have determined that this technique
can select the contour that accurately represents the mass body
contour for a given set of parameters; however, further analysis
of the likelihood function revealed that the computer could
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choose a set of three segmentation contour choices from the
entire set of contour choices, and then make a final decision from
these three choices.

The algorithm can be summarized in several steps. Initially, we
use an intensity based thresholding scheme to generate a
sequence of grown contours (S;), where gray value is the
similarity criterion. The image is also multiplied by a 2D
trapezoidal membership function (2D shadow), whose upper base
measures 40 pixels and lower base measures 250 pixels (1 pixel =
50 microns). The image to which the shadow has been applied is
henceforth referred to as the "fuzzy" image. The original image
and its fuzzy version were used to compute the likelihood of the
mass’s boundaries. The computation method is comprised of
two components for a given boundary: (1) formulation of the
composite probability and (2) evaluation of likelihood.

In addition, we chose to aggregate contours using the original
image. This accounts for the major difference from that
implemented by the previous investigators. Since smoother
contours were not used, the likelihood function showed greater
variations. In many situations, the greatest variations occurred
when there was a sudden increase of the likelihood, and this was
strongly correlated with the end of the mass border growth. This
phenomenon would be suppressed if the fuzzy image was used to
generate the contours. The fuzzy image was used mainly to
construct the likelihood function.

2.2 Composite Probability Formation
For a contour (§;), the composite probability (C;) is calculated:
Cflsi = p(f« ()C, .VXS;)X p(’ni (“’C’)%Si) (1)
The quantity fi(x,v) is the area to which the 2D shadow has been
multiplied, p(fi(x,v)IS;) is the probability density function of the
pixels inside S; where ‘i’ is the region growing step associated
with a given intensity threshold. The quantity m(x,v) is the area
outside S; (non-fuzzy), and p(my(x,v)IS;) is the probability density
function of the pixels outside §;. Next we find the logarithm of
the composite probability of the two regions, Cy:

Log (C‘.|S‘.) = log(p(f}(x, )‘)|S‘.))+ log(p(m (x, y)'S,.)) (2)

2.3 Evaluation of Likelihood Function

The likelihood that the contour represents the fibrous portion of
the mass, i.e., mass body is determined by assessing the maximum
likelihood function:

argmaX(L()g(C,.lS,.)) S,i=1l.n (3)

Equation (3) intends to find the maximum value of the
aforementioned likelihood values as a function of intensity
threshold. It has been assessed (also by other investigators [4])
that the intensity value corresponding to this maximum likelihood
value is the optimal intensity needed to delineate the mass body
contour. However, in our implementation it was discovered that
the intensity threshold corresponding to the maximum likelihood
value confines the contour to the mass body. In our study many
of these contours did not include the extended borders. We,
therefore, hypothesize that the contour represents the mass’s
extended borders may well be determined by assessing the
maximum changes of the likelihood function, ie., locate the
steepest likelihood value changes within the function:

Llroglcfs )k S,i =1 )
di

Based on this assumption, we have carefully analyzed the
behavior of maximum likelihood function. The analysis reveals
that we have successfully discovered that the most accurate mass
delineation is usually obtained by using the intensity value
corresponding to the first or second steep change locations within
the likelihood function immediately following the maximum
likelihood value on the likelihood function.

ST00000

050089002650 2700 ~75T" Se6Q

~ Group 1
710000 (max likelihood location)
ST13000
720000 Group 2
725000 (first steep change location)
730000 Group 3
735000 b (gecond steep change location)

Figure 1: A likelihood function with steep change indicators

2.4 Steep change definition

The term "steep change" is rather subjective and can defined as a
location between two or more points in the function where the
likelihood values experience a significant change. In some cases
the likelihood function increases at a slow rate. The algorithm
design accounts for this issue by calculating the difference
between likelihood values in steps over several values and
comparing the results to two thresholds. The difference equation
is given by:

h(f) = f(: - wf)— f(: - w(r + 1)), t=0,...N (5)
where f is the likelihood function, z is the maximum intensity, w is
the width of the interval over which the likelihood differences are
calculated (e.g. — for w=7 differences are calculated every 7
points), and N is the total number of points in the searchable area
divided by w. If the calculation in question yields a value greater
than or equal to a given threshold, then the intensity
corresponding to this location is considered to be a steep change
location. The threshold algorithm occurs as follows:

If (h(t)ML > MLTI); t=0,....m
Then choice 1 = intensity where that condition is satisfied
If (h(t)ML > MLTz)', t=m,...,Z
Then choice 2 = intensity where that condition is satisfied

where h(t)y is the steep change value given by equation (5),
MLy, and MLy, are pre-defined threshold values, m is the
location in the function where the choice 1 condition is satisfied,
and z is the location in the function where the choice 2 condition
is satisfied. Once the condition is satistied for the first threshold
value (MLt} then its corresponding intensity value is used to
produce the segmentation contour for the first steep change
location. Once the condition is satisfied for MLy, then its
corresponding intensity value is used to produce the segmentation
contour for the second steep change location.

2.5 Validation
The segmentation method was validated on the basis of overlap
and accuracy [8,10]:

N

TP (6)

Overlap = ——HF—
NFJ\’ + NTP + NFP
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NTP + NT\/
NTP + NTJ\’ + NFP + NFN

@)

Accuracy =

where Nyp is the true positive fraction, Npy true negative fraction,
Ngp is the false positive fraction, and Ngy is the false negative
fraction. The gold standards used for the validation study were
mass contours, which have been traced by expert radiologists.
Our experiments produced contours for the intensity values
resulting from three locations within the likelihood functions: (1)
The intensity for which a value within the likelihood function is
maximum (group 1 contour) (2) The intensity for which the
likelihood function experiences its first steep change (group 2
contour) and (3) The intensity for which the likelihood function
experiences its second steep change (group 3 contour). We have
observed that the intensity for which the likelihood function
experiences its first steep change produces the contour trace that
is most highly correlated with the gold standard traces, regarding
overlap and accuracy.

3. EXPERIMENTS AND RESULTS

Here we describe the database used, describe the experiments,
provide visual results obtained by the algorithm, as well as report
the results obtained by the ANOVA test.

3.1 Database

For this study, a total of 122 masses were chosen from the
University of South Florida's Digital Database for Screening
Mammography (DDSM) [3]. The films were digitized at
resolutions of 43.5 or 50 pum's using either the Howtek or
Lumisys digitizers, respectively. The DDSM cases have been
ranked by expert radiologists on a scale from 1 to 5, where 1
represents the most subtle masses and 5 represents the most
obvious masses. The images were of varying subtlety ratings.
The first set of expert traces was provided by an attending
physician of the GUMC, and is hereafter referred to as the Expert
A traces. The second set of expert traces was provided by the
DDSM, and is hereafter referred to as the Expert B traces.

3.2 Experiments and Results

As mentioned previously, the term “steep change” is very
subjective and therefore a set of thresholds needed to be set in an
effort to define a particular location within the likelihood function
as a “steep change location”. For this study the following
thresholds  were  experimentally  chosen:  MLp;=1800,
ML1,=1300, where MLy,= threshold for steep change location 1
for the likelihood function, and MLy, = threshold for steep
change location 2 for the likelihood function. We performed a
number of experiments in an effort to prove that the intensity for
which the likelihood function experiences the first steep change
location produces the contour trace, which is most highly
correlated with the gold standard traces regarding overlap and
accuracy.

First we present segmentation results for two malignant cases
followed segmentation results for two benign cases. Each figure
contains an original image, traces for Experts A and B, and
computer segmentation results for groups 1, 2, and 3. Second,
we present data that plots the mean values for various margin
groups for both overlap and accuracy measurements. The plots

present data for the spiculated and ill-defined groups of malignant
masses, and ill-defined and circumscribed groups of benign
masses. Data was not presented for the other categories because
there was not a sufficient amount of cases.

Malignant mass

with spiculated Expert A | Expert B
marging Trace Trace
o nn
Group 1 Group 2 Group 3
Result Result Result

Figure 2: Segmentation Results: Spiculated Malignant Mass

Malignant mass .
Original

with ill-defined Expert A | Expert B
margins ROI Trace |  Trace |
o n n
Group 1 Group 2 Group 3
Result Result Result

Figure 3: Segmentation Results: Ill-defined Malignant Mass
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Malignant mass

with obscured Original Expert A Expert B
marging %ﬂ
(subtlety = 4) ‘ ‘ n
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Result Result Result

Figure 4: Segmentation Results: Obscured Malignant Mass
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4. DISCUSSION AND CONCLUSION

The visual results (see Figures 2-6) reveal that the group 2 trace
appears to delineate the masses better than the group 1 and group
3 contours in most cases. Visually, it appears that the method
has performed equally well on all margin groups. This is an
encouraging result because some of the more difficult masses to
segment are typically those that are spiculated, obscured, and
those that have ill-defined borders. The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other

groups on the basis of overlap and accuracy for all margin
groups, therefore supporting our visual observations.

In future work, a worthwhile study would be to test gather more
data for all margin groups in an effort to see if the various groups
require different parameter values to maximize the algorithm’s
robustness. Our ultimate goal is to optimize its performance for
those masses falling in the ill-defined and obscured margin groups
because segmentation of masses falling into those categories is
exceedingly difficult.
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ABSTRACT

In this study, a segmentation algorithm based on the steepest changes of a probabilistic cost function was tested
on non-processed and pre-processed dense breast images in an attempt to determine the efficacy of pre-processing
for dense breast masses. Also, the inter-observer variability between expert radiologists was studied. Background
trend correction was used as the pre-processing method. The algorithm, based on searching the steepest changes
on a probabilistic cost function, was tested on 107 cancerous masses and 98 benign masses with density ratings
of 3 or 4 according to the American College of Radiology’s density rating scale. The computer-segmented results
were validated using the following statistics: overlap, accuracy, sensitivity, specificity, Dice similarity index, and
kappa. The mean accuracy statistic value ranged from 0.71 to 0.84 for cancer cases and 0.81 to 0.86 for benign
cases. For nearly all statistics there were statistically significant differences between the expert radiologists.

Keywords: mass segmentation, inter-observer variability, digitized mammograms

1. INTRODUCTION

In the United States, breast cancer accounts for one-third of all cancer diagnoses among women and it has the
second highest mortality rate of all cancer deaths in women.” Several studies have shown that only 13% - 20%
of suspicious masses are determined to be malignant,”>* indicating that there are high false positive rates for
biopsied breast masses. A higher predictive rate is anticipated by combining the mammographer’s interpretation
and the computer analysis. Other studies have shown that 7.6% - 14% of the patients have mammograms that
produce false negative diagnoses.”® More accurate prediction can be achieved by combining a mammographer’s
interpretation with that of a Computer Assisted Diagnosis (CAD,. ) system, which can analyze masses for key
diagnostic indicators such as shape. For example, many malignant masses have ill-defined, and/or spiculated
borders and many benign masses have well-defined, rounded borders. Furthermore, the borders of breast masses
are sometimes obhscured in mammograms by glandular tissue. A CAD,. system can help physicians identify these
areas more accurately through a process called segmentation in which the computer automatically separates a
region of interest from surrounding tissue.

Mass segmentation has prompted the development of many techniques and it continues to be one of the most
closely studied areas in CAD,, today. Te Brake and Karssemeijer” have implemented a discrete dynamic contour
model, a method similar to snakes, that beging as a set of vertices connected by edges (initial contour) and
grows subject to internal and external forces. Li® has developed a method that employs k-means classification
to assign pixels to the region of interest (ROI) or to the background. Petrick et al.” have developed the Density
Weighted Contrast Enhancement (DWCE) method, in which a series of filters are applied to the image in an
attempt to extract masses. Comer et al.'¥ have utilized an EM technique to segment digitized mammograms into
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Lisa M. Kinnard: E-mail: kinnard@isis.imac.georgetown.edu, Telephone: 1 202 687 1572



homogeneous texture regions by assigning each pixel was to one of a set of classes so that the number incorrectly
classified pixels is minimized. Kupinski and Giger'" have developed a method, that combines region growing with
probability analysis to determine final segmentation. In this method, the probability-based function is formed
from a specific composed probability density function that is determined by a set of image contours produced
by the region growing method.

2. METHODS
2.1. Segmentation and Pre-processing

Our method evaluates the steepest changes within a probabilistic cost function in an effort to determine the
computer segmented contour that is most closely correlated with expert radiologist manual traces.'™'?  This
method segments breast masses by combining region growing with probability-based cost function analysis. For
each cost function there are a number of steepest changes in likelihood (see Figures 2e and 3e), where a steepest
change location is defined by a set of thresholds. In most cases the trace which is most likely to enclose the mass in
its entirety is produced by the intensity corresponding to that steepest change location. For example, a steepest
change location in Figure 2e is located at the intensity = 3100. The intensity corresponding to the maximum
value on the cost likelihood function is most likely to enclose the mass’s central body. Based on this analysis
the three best contours are chosen and the computer makes a final selection from these three choices. Typically,
the Group 1 trace encapsulates the central portion of the mass (intensity corresponds to maximum value on
likelihood function), the Group 2 trace encapsulates the central mass and borders extending into surrounding
tissue (intensity corresponds to first steepest change location), and the Group 3 trace encapsulates the area
covered by the Group 2 trace and surrounding fibroglandular tissue (intensity corresponds to second steepest
change location).

The masses used in this study were exceedingly difficult to segment due to the surrounding dense tissue. We
therefore thought that a contrast enhancement method - background trend correction in this experiment - would
help the segmentation process. The background correction technique is based on a two-dimensional third order
polynomial fit given by:

BC(x,y) = Zaj;l?”’j Y, (1)

where n=3. Hence, the corrected image (f.(x,y)) is obtained by subtracting the background trend (BC(z,y))
from the original image f(z,y):

Jelz,y) = fz,y) — BC(z,y). (2)

2.2. Statistical Methods

All masses were manually traced by two expert radiologists and the overlap, accuracy, sensitivity, specificity,
Dice Similarity Index (DSI), and kappa (#) statistic were calculated.™ '*  All statistics are formulated using the
following terms: Npp = the number of true positive pixels (pixels that are actually mass, Npy = the number of
true negative pixels (pixels that are actually background), Ngp= the number of pixels the computer interprets
as mass which are actually background, and Ngn = the number of pixels the computer interprets as background
which are actually mass (see Figure 1).

Nrp

Overlap = — — —, (3)
Nrp+ Npp+ Npn
Ny Nrn
Accuracy = — : Tl il ‘ Tl X — (4)
Npp + Nyy + Npp + Npy

Ny

Sensitivity = ki (5)

Nrp+ Npy'



Algorithm-G enerated
Segmentation Contour

Expert Drawn
Segmentation Contour

Figure 1. This figure is an example of a mass traced by an expert radiologist superimposed with the computer interpre-
tation

Speci ficity =

Ny
DSI = 2Nrp (7)

Neny +2Nypp + Npp’

o= 2(NppNoy + NepNen) (8)
(Nrp + Nen)(Neny + Nown) + (Nrp + Nep)(Nep + Nen )
Specifically, Landis and Koch!'® have developed a six-point scale with which the kappa statistic can be analyzed
(see table 1).

Table 1. Six-point Scale Indicating the Performance of the Kappa Statistic.

K Strength of Agreement
< 0.00 Poor
0.00 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0,80 Substantial
0.81 - 1.00 Almost Perfect

The statistics have values ranging from 0 to 1, where a value of 0 indicates no agreement and a value
of 1 indicates perfect agreement. While these statistics measure the performance of segmentation algorithms
reasonably well, it is possible that the algorithm in question can be biased toward one expert radiologist. To
examine this issue we used a two-tailed T-test which was performed using the SPSSTH statistical package.



Table 2. T-test Results for all Statistics: Expert A vs. Expert B (Non-Processed Cancerous Masses)

Hypothesis P-value P-value P-value
(Group 1) | (Group 2) | (Group 3)

Difference between Experts A and B (overlap) 0.000 0.000 NS
Difference hetween Experts A and B (accuracy) 0.000 0.000 0.000
Difference hetween Experts A and B (sensitivity) | 0.000 0.000 0.000
Difference between Experts A and B (specificity) | NS 0.000 0.000
Difference hetween Experts A and B (DSI) 0.000 0.000 NS
Difference hetween Experts A and B (k) 0.000 0.000 0.000

Table 3. Mean (u) Values for all Statistics: Experts A and B (Non-Processed Cancerous Masses)

Statistic p-value p-value p-value p-value p-value p-value
(Exp. A, | (Exp. B, | (Exp. A, | (Exp. B, | (Exp. A, | (Exp. B,
Group 1) | Group 1) | Group 2) | Group 2) | Group 3) | Group 3)

Overlap 0.28 0.36 0.46 0.52 0.47 0.49

Accuracy 0.72 0.82 0.78 0.85 0.77 0.82

Sensitivity 0.30 0.39 0.54 0.65 0.61 0.72

Specificity 0.98 0.98 0.94 0.92 0.89 0.86

DSI 0.41 0.51 0.60 0.66 0.62 0.64

K 0.32 0.43 0.48 0.57 0.47 0.53

2.3. Database and Experiments

The cases for this work were obtained from the University of South Florida’s Digital Database for Screening
Mammography (DDSM).'® The densities of all cases were rated using the American College of Radiology
(ACR) scale which ranges from 1 to 4. A breast containing a great deal of dense tissue would receive a rating
of 4. Approximately two-thirds of the cases used in this work received a density rating of 3 while the remaining
cases received a density rating of 4.

We performed two experiments in which we calculated the statistics between the computer results and manual
traces from both expert radiologists. In the first experiment the masses were unprocessed and in the second
experiment they were processed using background trend correction.

3. RESULTS
3.1. Statistical Results
Tables 2- 9 show p-values for the t-tests which analyzed inter-observer variability as well as the mean values of
all statistics for both expert radiologists. The significance level is p < 0.05. A table entry whose value is 0.000
implies that there the p-value for a particular test was less than 0.000 and a table entry of “NS” implies that
there was no significant difference for a particular test.



Table 4. T-test Results for all Statistics: Expert A vs. Expert B (Non-Processed Benign Masses)

Hypothesis P-value P-value P-value
(Group 1) | (Group 2) | (Group 3)

Difference between Experts A and B (overlap) 0.000 0.002 NS
Difference hetween Experts A and B (accuracy) 0.000 0.007 0.040
Difference hetween Experts A and B (sensitivity) | 0.000 0.000 0.000
Difference between Experts A and B (specificity) | NS 0.025 NS
Difference hetween Experts A and B (DSI) 0.000 0.003 NS
Difference hetween Experts A and B (k) 0.000 0.001 NS

Table 5. Mean (u) Values for all Statistics: Experts A and B (Non-Processed Benign Masses)

Statistic p-value p-value p-value p-value p-value p-value
(Exp. A, | (Exp. B, | (Exp. A, | (Exp. B, | (Exp. A, | (Exp. B,
Group 1) | Group 1) | Group 2) | Group 2) | Group 3) | Group 3)

Overlap 0.32 0.36 0.49 0.52 0.48 0.49

Accuracy 0.81 0.84 0.84 0.86 0.81 0.83

Sensitivity 0.36 0.40 0.60 0.66 0.72 0.77

Specificity 0.98 0.98 0.94 0.93 0.86 0.86

DSI 0.46 0.51 0.63 0.66 0.63 0.63

K 0.40 0.45 0.55 0.59 0.52 0.53

Table 6. T-test Results for all Statistics: Expert A vs. Expert B (Background Trend Corrected Cancerous Masse

Hypothesis P-value P-value P-value
(Group 1) | (Group 2) | (Group 3)
Difference between Experts A and B (overlap) 0.000 0.000 0.000
Difference hetween Experts A and B (accuracy) 0.000 0.000 0.000
Difference hetween Experts A and B (sensitivity) | 0.000 0.000 0.000
Difference between Experts A and B (specificity) | NS 0.024 0.003
Difference hetween Experts A and B (DSI) 0.000 0.000 0.000

)



S

Table 7. Mean (u) Values for all Statistics: Experts A and B (Background Trend Corrected Cancerous Masse:

Statistic p-value p-value p-value p-value p-value p-value
(Exp. A, | (Exp. B, | (Exp. A, | (Exp. B, | (Exp. A, | (Exp. B,
Group 1) | Group 1) | Group 2) | Group 2) | Group 3) | Group 3)

Overlap 0.19 0.26 0.38 0.47 0.38 0.44

Accuracy 0.73 0.83 0.78 0.87 0.77 0.85

Sensitivity 0.20 0.27 0.41 0.52 0.49 0.61

Specificity 1.00 1.00 0.99 0.99 0.94 0.93

DSI 0.29 0.38 0.51 0.60 0.53 0.59

Table 8. T-test Results for all Statistics: Expert A vs. Expert B (Background Trend Corrected Benign Masse
Hypothesis P-value P-value P-value
(Group 1) | (Group 2) | (Group 3)
Difference between Experts A and B (overlap) 0.000 0.000 0.002
Difference between Experts A and B (accuracy) 0.001 0.002 0.006
Difference hetween Experts A and B (sensitivity) | 0.000 0.000 0.000
Difference between Experts A and B (specificity) | NS 0.049 0.010
Difference hetween Experts A and B (DSI) 0.000 0.000 0.003

Table 9. Mean (u) Values for all Statistics: Experts A and B (Background Trend Corrected Benign Masses)
Statistic p-value p-value p-value p-value p-value p-value
(Exp. A, | (Exp. B, | (Exp. A, | (Exp. B, | (Exp. A, | (Exp. B,
Group 1) | Group 1) | Group 2) | Group 2) | Group 3) | Group 3)
Overlap 0.21 0.24 0.41 0.45 0.44 0.47
Accuracy 0.80 0.83 0.84 0.87 0.83 0.85
Sensitivity 0.21 0.24 0.44 0.48 0.56 0.62
Specificity 1.00 1.00 0.99 0.99 0.94 0.94
DSI 0.31 0.34 0.53 0.57 0.59 0.62

S



3.2. Visual Results

Figures 2 - 3 contain the following parts: (a) original image (b) cropped ROI and its computer segmented results
(non-processed image) (¢) cropped ROT and its computer segmented results (background trend corrected image)
(d) manually traced expert delineations and (e) cost likelihood functions. Again, the Group 1 trace encapsulates
the central portion of the mass (intensity corresponds to maximum value on likelihood function), the Group
2 trace encapsulates the central mass and borders extending into surrounding tissue (intensity corresponds to
first steepest change location), and the Group 3 trace encapsulates the area covered by the Group 2 trace and
surrounding fibroglandular tissue (intensity corresponds to second steepest change location).
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Figure 2. Cancerous mass: (a) original image (b) cropped ROI and its computer segmented results (non-processed
image) (c¢) cropped ROI and its computer segmented results (background trend corrected image) (d) manually traced

expert delineations and (e) cost likelihood functions
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(¢) cropped ROI and its computer segmented results (background trend corrected image) (d) manually traced expert
delineations and (e) cost likelihood functions



4. DISCUSSION AND CONCLUSION

As the visual and statistical results demonstrate, the background trend correction pre-processing method does
not seem to have improved the performance of the automated segmentation algorithm. From a visual standpoint,
background trend correction seems to have caused some areas inside the masses to become darker, and thus, the
region growing portion of the algorithm would not grow into these areas. Simultaneously, for some cases this
darkening effect caused a sharper contrast between the mass and surrounding tissue, making the mass boundaries
easier to see.

For most statistics there were statistically significant differences between both radiologists. In general, the
group 2 and group 3 traces achieved better performance values than the group 1 traces for both radiologists. The
mean values for Expert B were greater than those for Expert A, which reveals that there was stronger agreement
between the computer and Expert B than between the computer and Expert A.

Background trend correction causes the likelihood cost functions to incur more steepest changes as opposed
to the cost likelihood functions for the non-processed images, which are typically smooth. In turn, the computer
makes its decisions earlier in the steep change searching process, consequently, the mass contours encapsulate
smaller areas. In future work it will be necessary to change the steepest change parameters to account for the
change. The inter-ohserver variability implies that in future work we should also investigate the possibility of
obhtaining a consensus opinion hetween the two existing radiologists. An alternative method would obtain more
radiologist traces.
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ABSTRACT

Validation of breast mass image segmentation algorithms is a key
component of their success. However, in cases where the masses
are embedded in dense tissue it is difficult to obtain consistent gold
standard fraces among expert radiologists. In this study we
examined inter-observer variability by performing ANOVA tests
(p<0.05) on a set of three segmentation traces, in efforts to decide
upon the best trace. We used the overlap, accuracy, sensitivity,
specificity, and Dice Similarity Index to validate the traces and
discovered statistically significant results between one trace and
the second and third traces. The p-values ranged between 1.4x107
and 4.86x107,

1. INTRODUCTION

One of the greatest challenges in validation of segmentation
algorithms is inter-observer variability among gold standard traces.
Typical studies use one to three observers when validating their
algorithms, and strong agreement between these observers is
desirable. Sahiner et. al. compared an automated breast mass
segmentation method to manual traces of two expert radiologists
and analyzed the degree of agreement between the two observers
[1].  They calculated the minimum Fuclidean distance, the
Haussdorf distance, and the overlap measure and determined if the
difference between the computer-segmented trace and the expert
trace fell within the range of variation between observers.
Pasquerault et. al. compared three segmentation algorithms for
mammographic microcalcifications with an expert radiologist and
three experienced scientists by independently rating the accuracy
of each algorithms and then determining which method was
preferred by each expert [2]. In both evaluation studies, inftra-
observer variability was addressed by allowing the observers to
randomly view cases more than once. Zheng et. al. compared the
performance of three digitized mammography CAD schemes after
the images in question were rotated and resampled [3].
Specifically, their multiple image-based scheme matched regions
by comparing the distance between centers of gravity of two
Regions Of Interest (ROI) and the maximum radial length of either
ROIL. Zhou et. al. developed an automated nipple identification
system, where two expert radiologists identified nipple locations
on a set of digitized mammograms and the images either contained
clearly identifiable nipples or invisible nipples [4]. For the
mvisible nipple locations one radiologist estimated their locations

once, a second radiologist estimated their locations twice, and the
three estimates were averaged.

Strong agreement between observers can be difficult to achieve
due to an ROT’s unclear borders (see Figure 1). Specifically, dense
breast masses on digitized mammograms are difficult to observe
and are therefore difficult to trace. It is also important that the
segmentation algorithm is not biased toward a particular observer
s0 we must incorporate as many observers as possible into a
validation study. In this work we attempted to determine optimal
computer segmentation masses for dense breast masses by
studying inter-observer variability between a set of three expert
radiologists.

Dense Breast Mass

- Expert A Trace

Expert B Trace
Figure 1: Malignant Dense Breast Image With
Three Expert Traces

Expert C Trace

2. METHOD

In previous work -- and in the current study -- we utilized a
segmentation algorithm which combines region growing with
likelihood function analysis [5,6]. This method narrows a large set
of computer-segmented contours to three possible choices, and the
ultimate goal is to choose the best contour from these three choices.
In this study we are observing inter-observer variability between
experts. We visually observed moderate to strong agreement
between a pair of observers on breast masses with easily
identifiable borders, however, for dense breast cases we observed
that the agreement was not as strong. Furthermore, a colleague



pointed out large differences between observers and cited these
differences as a critical area to be addressed in subsequent studies.
We have performed a set of intra-observer studies that used the
Analysis of Variance (ANOVA) test to compare the three final
computer-segmented results to manual traces provided by three
expert radiologists.  The database, validation methods, and
experiments are described in the next several sections.

2.1. Database

The database is a set of 124 malignant cases and 135 benign cases
provided by the University of South Florida's Digital Database for
Screening Mammography [7]. A set of expert radiologists
manually traced the ROIs, where the first two observers were
expert radiologists from Advanced Radiologists corporation
(Expert A) and the Georgetown University Medical Center (Expert
B), respectively. The third radiologist trace data (Expert C) was
provided by the DDSM project, a collaborative effort between
several hospitals. It appears that the DDSM expert data was
provided by several expert radiologists, as some ftraces are tightly
drawn around the ROI and other traces are not tightly drawn
around the ROI. Since Experts A and B were instructed to trace
the ROI borders as closely as possible, it was necessary to use the
tightly drawn DDSM contours for the current study. There were
approximately 40 DDSM tightly drawn traces for malignant
masses and 26 tightly drawn traces for benign masses.

The three computer-segmented traces are henceforth referred to as:
a) Group | trace: the trace encapsulating the central mass body, b)
Group 2 trace: the trace encapsulating the central mass body and
its extended borders (spiculations and projections, for example),
and ¢) Group 3 ftrace: the trace encapsulating the mass body, its
extended borders, and surrounding fibroglandular tissue which
may or may not belong to the mass.

2.2. Validation
The segmentation method was validated on the basis of overlap,
accuracy, sensitivity, specificity, and Dice Similarity Index (DSI)

N
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Accuracy = : (N
’ NTP + NT:V + NFP + NHV
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where Nypp is the true positive fraction, Nyy true negative fraction,
Nrp 1s the false positive fraction, and Ngy is the false negative
fraction. The gold standards used for the validation study were
mass contours, which have been traced by expert radiologists.

2.3. Experiments

The current study attempts to determine the optimal contour from a
set of three contour choices determined by an automated
segmentation method.  We performed a set of intra-observer
studies, which compared the computer-segmentation trace to each

individual expert. Specifically, we made the following
comparisons for Experts A, B and C: (a) group 1 vs. group 2 (b)
group 2 vs. group 3 and (c) group 1 vs. group 3. Next we
performed a set of inter-observer experiments, which compared the
preferences of each observer. Specifically, for groups 1, 2, and 3:
(a) Expert A vs. Expert B (b) Expert B vs. Expert C, and (¢) Expert
A vs. Expert C.

3. RESULTS

The experiments have been performed for both malignant and
benign masses, however, in the interest of brevity results are
shown for the malignant masses. Tables 1-6 contain p-values
(p<0.05) for the ANOVA tests of the intra-observer experiments
described in section 2.3, and mean values for all statistical
measurements. In cases where the result was not statistically
significant, the table entry reads “NS”. Tables 7-12 contain p-
values (p<0.05) for the ANOVA tests of the intra-observer
experiments described in section 2.3, and mean values for all
statistical measurements. In cases where the result was not
statistically significant, the table entry reads “NS”. Figures 2-5

show a computer segmented results and expert traces for four
malignant masses embedded in dense tissue.

3.1 Statistical Results

Table 1: Expert A Intra-observer Experiment, Malignant Cases

Gr. 2 vs.
Gr.3

Gr.1vs.
Gr.3

5.32x10" 4.09x107"
1.4x107 NS 2.2 x107

4.48x10™" 8.4 x107 4.86x107%
8.1x107 2.5x107 1.19x10"°
1.03x10°1° NS 1.82x10"°

Table 2: Mean Measurement Values for all Statistical
Measurements (Expert A)

Group 1 Group 2 Group 3
0.28 0.44 0.46
0.71 0.76 0.76
0.30 0.52 0.60
0.98 0.94 0.89
0.41 0.59 0.62

Table 3: Expert B Intra-observer Experiment, Malignant Cases
Gr. 2 vs. Gr.1vs.
Gr. 3 Gr. 3

NS 4.99x10°

6.55x10"

NS NS NS

1.63x10°" 2.12 x107 6.63x107"
8.43x107 1.12x10° 3.77x107"
1.03x107 NS 2.77x10°

Table 4. Mean Measurement Values for all
Statistical Measurements (Expert B)

_ Group 1 Group 2 Group 3

0.36 0.50 0.47
0.81 0.83 0.81
0.39 0.63 0.70
0.97 0.92 0.86
0.51 0.64 0.62




Table 5: Expert C Intra-observer Experiment, Malignant Cases
Gr. 1 vs. Gr.2vs. Gr.1vs.
Gr.2 Gr.3 Gr.3

NS 1.68x10”

NS NS NS
1.24x10°° 2.62 x107 3.74x102
3.67x107 1.54x10% | 2.57x10°
2.25x107 NS 2.14x107

Table 6: Mean Measurement Values for all
Statistical Measurements (Expert C)

_ Group 1 Group 2 Group 3
0.32 0.48 0.47
0.79 0.83 0.81
0.33 0.53 0.61
0.98 0.96 0.89
0.47 0.63 0.63

Table 7: Inter-observer Experiment Results:
Group | Trace Malignant Masses

3.76 x107
1.87 x107 NS
2.66 x107 NS
NS NS NS
8.59 x107 NS

Table 8: Inter-observer Mean Measurement Values for
Group 1 Traces (Malignant Masses)

_ Expert A Expert B Expert C
0.33 0.44 0.33
0.77 0.86 0.80
0.35 0.46 0.34
0.98 0.98 0.99
0.47 0.59 0.48

Table 9: Inter-observer Experiment Results:
Group 2 Trace Malignant Masses

3.68 x107
1.41x10° NS
1.28 x10° NS
NS NS NS
6.91 x107 NS

Table 10: Inter-observer Mean Measurement Values for
Group 2 Traces (Malignant Masses)

_ Expert A Expert B Expert C

0.48 0.59 0.48
0.81 0.89 0.84
0.54 0.68 0.53
0.96 0.95 0.96
0.62 0.73 0.63

Table 11: Inter-observer Experiment Results:
Group 3 Trace Malignant Masses
Exp. B vs.
Exp. C
NS NS NS

3.61 x10 NS NS
4,68 x10° 237 x10™ NS
NS NS NS
NS NS NS

Table 12: Inter-observer Mean Measurement Values for
Group 3 Traces (Malignant Masses)

_ Expert A Expert B Expert C
0.48 0.53 0.47
0.80 0.85 0.81
0.648 0.78 0.62
0.90 0.88 0.89
0.63 0.68 0.63

3.2 Visual Results

Group lTrac Group 2 Trce

Original Mass

Expert A Expert B
Figure 2: Malignant Mass Image with
Computer Segmented Results and Expert Traces

Oigina Mas Group 2 Trace

Group | Trace

Expert A Expert B
Figure 3: Malignant Mass Image with
Computer Segmented Results and Expert Traces

Expert C

Group 3 Trace

Expert C



ss  Group | Trace Group 2 Trace Group 3 Trace

Expert A

Expert B
Figure 4: Malignant Mass Image with
Computer Segmented Results and Expert Traces

Expert C

4. DISCUSSION OF RESULTS AND CONCLUSION

4.1 Intra-observer Result Discussion

The statistical analysis shows that there were statistically
significant differences for Expert A regarding the experiment that
tested the group 1 traces versus the group 2 traces and for the
experiment that tested the group 1 trace versus the group 3 traces
for all statistical measurements. There were no statistically
significant differences for the overlap, accuracy, and DSI
measurements between the group 2 and group 3 traces, but the
mean values for the group 3 traces were slightly higher than those
of group 2. There were statistically significant differences for
Expert B regarding the experiment that tested the group 1 traces
versus the group 2 traces and for the experiment that tested the
group | trace versus the group 3 traces for nearly all statistical
measurements. There were no statistically significant differences
for the overlap, accuracy, and DSI measurements between the
group 2 and group 3 traces, but the mean values for the group 2
traces were slightly higher than those of group 3. There were
statistically significant differences for Expert C regarding the
experiment that tested the group 1 traces versus the group 2 traces
and for the experiment that tested the group 1 trace versus the
group 3 traces for nearly all statistical measurements. There were
no statistically significant differences for the overlap, accuracy,
and DSI measurements between the group 2 and group 3 fraces,
but again the mean values for the group 2 traces were slightly
higher than or equal to those of group 3.

4.2 Inter-observer Result Discussion
The statistical analysis shows statistically significant differences in
the experiments for Expert A versus Expert B and Expert A versus
Expert C for nearly all statistical measurements for the group 1 and
group 2 traces; however, for the group 3 trace there were few
statistically significant differences between Experts.

4.3 Conclusion

The intra-observer results show that Experts B and C tend to favor
the group 2 ftraces in comparison to the groups 1 and 3 fraces.
However, Expert A tends to favor the group 3 trace, in comparison
to the groups 1 and 2 traces. These results are consistent with the
fact that Expert A tends to draw larger traces, and the group 3 trace
is always the largest of the three computer segmentation results.
The inter-observer results show that the group 1 and group 2 traces
are more closely correlated with Expert B, than with Experts A and
C for nearly all statistical measurements. This is probably the case

because Expert B appeared to have to traced the largest mass area
which encapsulates the mass without including surrounding
fibroglandular tissue.

Overall it appears that the group 2 trace may be the optimal
contour trace for the aforementioned segmentation algorithm and
in future work, we will test the effect of using the various
segmentation results upon the results of a CAD; system. If
possible, we will also incorporate more expert radiologist traces.
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Our purpose in this work was to develop an automatic boundary detection method for mammo-
graphic masses and to rigorously test this method via statistical analysis. The segmentation method
utilized a steepest change analysis technique for determining the mass boundaries based on a
composed probability density cost function. Previous investigators have shown that this function
can be utilized to determine the border of the mass body. We have further analyzed this method and
have discovered that the steepest changes in this function can produce mass delineations that
include extended projections. The method was tested on 124 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening Mammography (DDSM). The
segmentation results were validated using overlap, accuracy, sensitivity, and specificity statistics,
where the gold standards were mamual traces provided by two expert radiologists. We have con-
cluded that the best intensity threshold corresponds to a particular steepest change location within
the composed probability density function. We also found that our results are more closely corre-
lated with one expert than with the second expert. These findings were verified via Analysis of
Variance (ANOVA) testing. The ANOVA tests obtained p-values ranging from 1.03X107%-7.51
X 107! for the single observer studies and 2.03X 1072-9.43X 10™* for the two observer studies.
Results were categorized using three significance levels, ie., p<<0.001 (extremely significant), p
< 0.01 (very significant), and p<C0.05 (significant), respectively. © 2004 American Association of
Physicists in Medicine. [DOI: 10.1118/1.1781551]

Key words: mass boundary detection, mammography, probability-based cost function

I. INTRODUCTION

In the United States, breast cancer accounts for one-third of
all cancer diagnoses among women and it has the second
highest mortality rate of all cancer deaths in women.' Breast
cancer studies are therefore essential for its ultimate eradica-
tion. Several studies show that only 13%-29% of suspicious
masses are determined to be malignant®> * indicating that
there are high false positive rates for biopsied breast masses.
A higher predictive rate is anticipated by combining the
mammographer’s interpretation and the computer analysis.
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Other studies show that 7.6%—14% of the patients have
mammograms that produce false negative diagnoses.”® Alter-
natively, a Computer Assisted Diagnosis (CAD,) system can
serve as a clinical tool for the radiologist and consequently
lower the rate of missed breast cancer.

Generally, CAD, systems consist of three major stages,
namely, segmentation, feature calculation, and classification.
Segmentation is arguably one of the most important aspects
of CAD,—vparticularly for masses—because a strong diag-
nostic predictor for masses is shape. Specifically, many ma-

© 2004 Am. Assoc. Phys. Med. 2796
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lignant masses have ill-defined, and/or spiculated borders
and many benign masses have well-defined, rounded bor-
ders. Furthermore, breast masses can have unclear borders
and are sometimes obscured by glandular tissue in mammo-
grams. During the search for suspicious areas masses of this
type may be overlooked by radiologists. When a specific arca
is deemed to be suspicious, the radiologist analyzes the over-
all mass, including its shape and margin characteristics. The
margin of a mass is defined as the interface between the mass
and surrounding tissue, and is regarded by some as one of
the most important factors in determining its significance.’
Specifically, a spiculated mass consists of a central mass
body surrounded by fibrous extensions, hence the resulting
stellate shape. In this context, “extension” refers to those
portions of the mass containing ill-defined borders, spicula-
tions, fibrous borders, and projections. Although the diam-
eters of these cancers are measured across the central portion
of the mass, microscopic analysis of the extensions also re-
veals associated cancer cells, in other words, the extended
projections may contain active mass growth.”* In addition,
the features of the extended projections and ill-defined bor-
ders are highly useful for identifying masses. Hence, proper
segmentation—including the body and periphery—is essen-
tial for the computer to analyze, and in turn, determine the
malignancy of the mass in mammographic CAD, systems.

Te Brake and Karssemeijer” implemented a discrete dy-
namic contour model, a method similar to snakes, which
begins as a set of vertices connected by edges (initial con-
tour) and grows subject to internal and external forces. Li'
developed a method that employs k-means classification to
categorize pixels as belonging to the region of interest (ROI)
or background. Petrick ef al'' developed the Density
Weighted Contrast Enhancement (DWCE) method, in which
series of filters are applied to the image in an attempt to
extract masses. Pohlman ef al.'?> developed an adaptive re-
gion growing method whose similarity criterion is deter-
mined from calculations made in 5 X5 windows surrounding
the pixel of interest. Mendez ef al."® developed a method,
which combined bilateral image subtraction and region
growing.

Several studies have also used probability-based analysis
to segment digitized mammograms. Li er al.'* developed a
segmentation method that first models the histogram of
mammograms using a finite generalized Gaussian mixture
(FGGM) and then uses a contextual Bayesian relaxation la-
beling (CBRL) technique to find suspected masses. Further-
more, this method uses the Expectation-Maximization (EM)
technique in developing the FGGM model. Comer ef al."
utilized an EM technique to segment digitized mammograms
into homogeneous texture regions by assigning each pixel to
one of a set of classes such that the number of incorrectly
classified pixels was minimized. Kupinski and Giger'® devel-
oped a method, which combines region growing with prob-
ability analysis to determine final segmentation. In their
method, the probability-based function is formed from a spe-
cific composed probability density function, determined by a
set of image contours produced by the region growing
method. This method is a highly effective one and it was
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implemented by Te Brake and Karssemeijer in their work’
that compared the results of a model of the discrete dynamic
contour model with those of the probability-based method.
For this reason, we chose to investigate its use as a possible
starting point from which a second method could be devel-
oped. Consequently for our implementation of this work we
discovered an important result, i.¢., the steepest changes of a
cost function composed from two probability density func-
tions of the regions. It appears that in many cases this result
produces contour choices that encapsulate important borders
such as mass spiculations and ill-defined borders.

Several CAD, classification techniques have been devel-
oped. They are described here to underscore the importance
of accurate segmentation in CAD, studies. Lo et al.'” devel-
oped an effective analysis method using the circular path
neural network technique that was specifically designed to
classify the segmented objects, and it can certainly be ex-
tended for the applications related to mass classification. Po-
lakowski ef al.'® used a multilayer perceptron (MLP) neural
network to distinguish malignant and benign masses. Both
Sahiner ef al.'” and Rangayyan et al?° used linear discrimi-
nant analysis to distinguish benign masses from malignant
masses. While many CAD, systems have been developed,
the development of fully-automated image segmentation al-
gorithms for breast masses has proven to be a daunting task.

il. METHODS

A. Segmentation method—Maximum change of cost
function as a continuation of probability-based
function analysis

As a point of clarification, the function used to find opti-
mal region growing contours in the Kupinski and Giger
study'® is referred to as the probability-based function and
our function is referred to as the cost function. The two func-
tions are similar, however they differ in terms of the images
used in their formation. As an initial segmentation step, the
region growing is used to aggregate the area of
interest,'>!*2! where grayscale intensity is the similarity cri-
terion. This phase of the algorithm starts with a seed point
whose intensity is high, and nearby pixels with values greater
than or equal to this value are included in the region of
interest. As the intensity threshold decreases, the region in-
creases in size, therefore there is an inverse relationship be-
tween intensity value and contour size. In many cases the
region growing method is extremely effective in producing
contours that are excellent delineations of mammographic
masses. However, the computer is not able to choose the
contour that is most highly correlated with the experts’ de-
lineations, specifically, those masses that contain ill-defined
margins or margins that extend into surrounding fibroglan-
dular tissue. Furthermore, the task of asking a radiologist to
visually choose the best contour would be both time inten-
sive and extremely subjective from one radiologist to an-
other.

The segmentation technique described in this work at-
tempts to solve and automate this process by adding a two-
dimensional (2-D) shadow and probability-based compo-
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nents to the segmentation algorithm. Furthermore, we have
devised a steepest descent change analysis method that
chooses the best contour which delineates the mass body
contour as well as its extended borders, i.e., extensions into
spiculations and areas in which the borders are ill-defined or
obscured. It has been discovered that the probability-based
function is capable of extracting the central portion of the
mass density as demonstrated by the previous investigators,'®
and in this work the method has been advanced further such
that it can include the extensions of the masses. The en-
hanced method can produce contours, which closely match
expert radiologist traces. Specifically, it has been observed
that this technique can select the contour that accurately rep-
resents the mass body contour for a given set of parameters.
However, a further analysis of the cost function composed
from the probability density functions inside and outside of a
given contour revealed that the computer could choose a set
of three segmentation contour choices from the entire set of
contour choices, and latter make a final decision from these
three choices.

1. Region growing and preprocessing

Initially, a 512X 512 pixel area surrounding the mass was
cropped. The region growing technique'>'* to aggregate
the region of interest was employed, where the similarity
criterion for our region growing algorithm is grayscale inten-
sity. To start the growth of the first region, a seed point was
placed at the center of the 512X 512 ROL The region grow-
ing process continues by decreasing the intensity value until
we have grown a sufficiently large set of contours.

Next, the image is multiplied by a 2-D trapezoidal mem-
bership function with rounded corners whose upper base
measures 40 pixels and lower base measures 250 pixels
(1 pixel= 50 microns). This function was chosen because it
is a good model of the mammographic mass’ intensity distri-
bution. Since the ROI's have been cropped such that the
mass’ center was located at the center of the 512 pixel
X512 pixel area, shadow multiplication emphasizes pixel
values at the center of the ROI and suppresses background
pixels. The image to which the shadow has been applied is
henceforth referred to as the “processed” image. The origi-
nal image and its processed version were used to compute
the highest possibility of its boundaries. The computation
method is comprised of two components for a given bound-
ary: (1) formulation of the composed probability as a cost
function and (2) evaluation of the cost function.

The contours were grown using the original image as op-
posed to the processed image, and this choice accounts for a
major difference between the current implementation and
that of the previous investigators.'® By using contours gen-
erated from the original image, a cost function composed
from the probability density functions inside and outside of
the contours was produced. In many situations, the greatest
changes in contour shape and size occur at sudden decreases
within the function. In analyzing these steep changes it was
observed that the intensity values corresponding to the steep
changes typically produced contours that encapsulated both
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Intensity=2884

Intensity=2810

Intensi

(a) (b)

FiG. 1. Four grown contours used to construct the cost function: starts from
high intensity thresholds and moves towards low intensity thresholds. Each
contour separates the ROT into two parts: (a) Segmented image (based on
processed image) used to compute density function p(fy(x,y)|S,) and (b)
masked image (based on the nonprocessed original image) used to compute
density function p(m(x,y)|S;) for four intensity threshold values.

the mass body as well as its spiculated projections or ill-
defined margins. This phenomenon would be suppressed if
the processed image was used to generate the contour. A
more detailed discussion of steep changes within the cost
function is forthcoming in Sec. HA2C.

The processed image was mainly used to construct the
cost function. A common technique used in mass segmenta-
tion studies is to pre-process the images using some type of
filtering mechanism''® in an effort to separate the mass
from surrounding fibroglandular tissue. This method could
be particularly beneficial to the region growing process be-
cause it would aid in preventing the regions from growing
into surrounding tissue. Alternatively, the filtering process
could impede our goal of attempting to encapsulate a mass’s
extended borders as well as borders that are ill-defined due to
the filtering process’s a tendency to create rounded edges on
margins that are actually jagged or spiculated. This phenom-
enon could potentially defeat the goal of extracting mass
borders. For these reasons, we have chosen to aggregate the
contours using the original ROI rather its processed version.

2. Formulation of the composed probability as a
cost function

In the context of this work, the composed probability is
defined as the probability density functions of the pixels in-
side and outside a contour using a processed and nonproc-
essed version of an image. Specifically, for a contour (S)),
the composed probability (C;) is calculated:

h ’

C|S,= H0 (xS H0 pOm,(x.y)
j= j=

S). (1)

The quantity f,(x,») is the set of pixels, which lie inside the
contour S; [see Fig. 1(a)], and this area contained processed
pixel values. The quantity p(f,(x.»)|S,) is the probability
density function of the pixels inside S; (f,(x,y)), where “/”
is the intensity threshold used to produce the contours given
by the region growing step, and “/” is the maximum inten-
sity value. The quantity m(x,v) is the set of pixels, which
lie outside the contour S; [see Fig. 1(b)], and this area con-
tained nonprocessed pixels. The quantity p(m;(x,v)|S;)} is
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the probability density function of the pixels outside §;,
where “7” is the intensity threshold used to produce the con-
tours given by the region growing step, and “/” is the maxi-
mum intensity value. For implementation purposes, the loga-
rithm of the composed probability of the two regions, C; was

used:

Log(C;

Sy =log

h
] p(fi(x.y) Si))
j=0

h

IT pOnix.p)
Jj=0

+log SH. (2)

3. The cost function based on the composed
probability density functions

To select the contour that represents the fibrous portion of
the mass, it is appropriate to examine the maximum value of
the cost function:

arg max(Log(C,|S,);S;.i=1,...,n). (3)

It has been assessed (also by other investigators™'®) that the
intensity value corresponding to this maximum value is the
optimal intensity needed to delineate the mass body contour.
However, in the current implementation it was discovered
that the intensity threshold corresponding to the maximum
value confines the contour to the fibrous portion of the mass,
or, the mass body. In this study many of these contours did
not inchude the extended borders. It is therefore hypothesized
that the contour representing the mass extended borders may
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FiG. 2. (a) Example of cost function with steepest
change location indicators. (b) Example of a

1 probability-based function without an obvious steepest
change location.

well be determined by assessing the greatest changes of the
cost function, or locating the steepest value changes within
the function

d Log(C
di( og(C;

S8, ,i=1,...n). 4)

Based on this assumption, cost functions associated with
masses were analyzed. The analysis reveals that the most
likely boundaries of masses associated with expert radiolo-
gist traces are usually produced by the intensity value corre-
sponding to the first or second steepest change of value im-
mediately following the maximum value on the cost function
[see Fig. 2(a}]. The description of this discovery is given
below. It is followed by a validation study described in Sec.
II B and by results shown in Sec. IIL. The overarching goal of
the steep descent method is to determine whether a certain
contour is the best contour, and whether it represents the
mass and its extended borders.

4. The definition of steepest change

The term “‘steepest change™ is rather subjective. In this
work we define it as a [ocation between two or more points
in the cost function where the values experience a significant
change. When the values are plotted as a function of inten-
sity, these significant changes are often visible in the func-
tion. In some cases the cost function increases at a slow rate,
therefore a potential steepest change location could be
missed. The algorithm design compensates for this issue by



2800

calculating the difference between values in steps over sev-
eral values and comparing the results to two threshold val-
ues. The difference equation is given by

dy=fz—wt)—fz—w(t+1)), t=0m, (5)
where f'is the cost function, z is the maximum intensity, w is
the width of the interval over which the cost function differ-
ences are calculated (e.g.—for w=35 differences are calcu-
lated every 5 points), and m is the total number of points in
the searchable area divided by w. Note that “wt” is associ-
ated with a specific contour “i” described earlier. If the value
of d(t) yields a value greater than or equal to a given thresh-
old, then the intensity corresponding to this location is deter-
mined to be a steepest change location. The threshold algo-
rithm occurs as follows:

If d(1)=TV)): t=0,.,m

Then choice 1 =intensity where that condition is sat-
isfied.

If (d(6)=TVy);, t=m,..z
Then choice 2 = intensity where that condition is sat-
isfied.

where TV, and TV, are pre-defined threshold values, m is
the location in the function where the choice | condition is
satisfied, and z is the location in the function where the
choice 2 condition is satisfied. During the examination of the
contour growth with respect to the cost function, the first
steepest change [d(1)yc; as choice 1] is determined by TV,
immediately after the location of the maximum cost function
value (corresponding to the mass body discussed earlier).
The second the steepest change [d(/)yc» as choice 21 is de-
termined by TV, after the first steepest change has been
established.

Figure 1(a) illustrates how the algorithm is carried out. In
this figure, the maximum value on the cost function occurs
for a grayscale intensity value of approximately 3330. The
searching process begins from this maximum point and it is
discovered that the first steepest change [d(#)ye; as choice
1] occurs for a grayscale intensity value approximately equal
to 3200. From this point the searching process continues and
it is discovered that the second steepest change [d(#) e as
choice 2] occurs for a grayscale intensity value approxi-
mately equal to 3175. In summary, intensity values of 3330,
3200, and 3175 can be used to grow 3 potential mass delin-
cation candidates, and the large set of intensity choices has
been narrowed to 3 choices. The following scenarios oc-
curred when the three contour choices produced by the (1)
maximum intensity value on the cost function (2) the inten-
sity corresponding to the first steepest change on the cost
function, and (3) the intensity corresponding to the second
steepest change on the cost function.

(1) Intensity corresponding to the maximum value on the
cost function: The central body of the mass was encap-
sulated.
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(2) Intensity corresponding to the first steepest change on
the cost function: The central body of the mass+ some of
its extended borders (i.e., projections and spiculations)
was encapsulated.

(3) Intensity corresponding to the second steepest change on
the cost function: The central body of the mass+ more
extended borders+ surrounding fibroglandular tissue was
encapsulated.

The intensity corresponding to the first steepest change
provides the best choice, and an examination of this obser-
vation is shown and discussed in Secs. Il and IV of this
work.

As stated previously, the steep changes within the cost
function would be suppressed if the processed image was
used to generate the contour; therefore, the function would
be relatively smooth. Figure 2(b), which shows a probability-
based function produced by contours that were grown using
a processed ROI, demonstrates this issue.

B. Validation method

In several segmentation studies the results were validated
using the overlap statistic alone, however, it was necessary 1o
analyze the performance of the steepest change algorithm on
the basis of four statistics to verify that the algorithm is in-
deed capable of categorizing mass and background pixels
correctly. This type of analysis provides helpful information
regarding necessary changes for the algorithm’s design and
can possibly aid in its optimization.

The segmentation method was validated on the basis of
overlap, accuracy, sensitivity, and specificity.**** These sta-
tistics are calculated as follows:

NTP

Overlap= ——— | (6)
P Npg+ Nypt Nep
Npp+Npy
Accuracy= , 7
Y Noipt N+ Nep+ Npew ™
N
Sensitivity= wa%“ , (8)
t New
N
Specificity= ﬁ‘?ﬂ; 9

where Nqp is the true positive fraction (part of the image
correctly classified as mass), Ny true negative fraction (part
of the image correctly classified as surrounding tissue), Npp

TaBLE I. Distribution of DDSM masses studied according to their subtlety
ratings.

Subtlety category Cancer Benign
Number of masses with a rating== | 5 3
Number of masses with a rating==2 12 12
Number of masses with a rating==3 18 17
Number of masses with a rating==4 9 23
Number of masses with a rating=5 15 10
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FIiG. 3. (a) Segmentation results for a malignant mass with spiculated mar-
gins (subtlety=2) (b) the corresponding cost function.

is the false positive fraction (part of the image incorrectly
classified as mass), and Npy is the false negative fraction
(part of the image incorrectly classified as surrounding tis-
sue). This method requires a gold standard, or, a contour to
which the segmentation results can be compared. The gold
standards for the experiments performed in this work were
mass contours, which have been traced by expert radiolo-
gists.

The experiments produced contours for the intensity val-
ues resulting from three locations within the cost functions:
(1) The intensity of the maximum value within the cost func-
tion; (2) the intensity for which the cost function experiences
its first steepest change; and (3) the intensity for which the
cost function experiences its second steepest change. It has
been observed that the intensity for which the cost function
experiences its first steepest change produces the contour
trace that is most highly correlated with the gold standard
traces, regarding overlap and accuracy. In cases for which
better results occur at the second steepest change location,
there is no significant difference between these results and
the results calculated for the first steepest change location.
Second, it has been observed that the results are more closely
correlated with one expert than with the second expert. These
hypotheses were tested using the one-way Analysis of Vari-
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FIG. 4. (a) Segmentation results for a malignant mass with ill-defined mar-
gins (subtlety=3); (b) the corresponding cost function.

ance (ANOVA) test.”** In this study, three significance lev-
els (i.e., p<<0.001, p<<0.01, and p<0.05) were used to cat-
egorize the ANOVA results as described in the next section.

. EXPERIMENTS AND RESULTS

The following sections describe the database and experi-
ments, and provide segmentation results and ANOVA test
results.

A. Database

For this study, a total of 124 masses were chosen from the
University of South Florida’s Digital Database for Screening
Mammography (DDSM).?® The DDSM films were digitized
at 43.5 or 50 wm’s using either the Howtek or Lumisys digi-
tizers, respectively. The DDSM cases have been ranked by
expert radiologists on a scale from 1 to 5, where | represents
the most subtle masses and 5 represents the most obvious
masses. Table T lists the distribution of the masses studied
according to their subtlety ratings. The images were of vary-
ing contrasts and the masses were of varying sizes.
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FIiG. 5. (a) Segmentation results for a benign mass with ill-defined margins
(subtlety=3); (b) the corresponding cost function.

The first set of expert traces was provided by an attending
physician at Georgetown University Medical Center
(GUMC), and is hereafter referred to as the Expert A traces.
The second set of expert traces was provided by the DDSM,
and is hereafter referred to as the Expert B traces.

B. Experiments

As mentioned previously, the term “steepest change” is
very subjective. Therefore, a set of thresholds needed to be
set in an effort to define a particular location within the cost
function as a “‘steepest change location.” For this study
the following thresholds were experimentally chosen:
TV, =1800, TV,=1300, where TV, equals the threshold for
steepest change location 1 for the cost function, and TV,
equals the threshold for steepest change location 2 for the
cost function. A number of experiments were performed in
an effort to prove that (1) the intensity for which the cost
function experiences the first steepest change location pro-
duces the contour trace, which is most highly correlated with
the gold standard traces with regard to overlap and accuracy.
In cases for which the second steepest change location
achieves better results, there are no significant differences
between the values obtained from the first steepest change
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location and the second steepest change location. The experi-
ments linked with these hypotheses comprise the studies for
a single observer. We have also set out to prove that (2) our
results are more closely correlated with one expert than with
the second expert. The experiments linked with this hypoth-
esis comprise the studies between two observers. First seg-
mentation results for two malignant cases are presented, fol-
lowed by segmentation results for two benign cases. Second,
the ANOVA results for a set of hypotheses are presented. The
contours produced by the maximum value as well as by the
steepest change locations within the cost functions are la-
beled as follows: (1) group 1: The intensity for which a value
within the cost function is maximum; (2) group 2: The inten-
sity for which the cost function experiences its first steepest
change; (3) group 3: The intensity for which the cost func-
tion experiences its second steepest change.

C. Results

Figures 3—-6 display the results for two malignant cases
accompanied by their cost functions as well as results for two
be--nign cases accompanied by their cost functions. The
ANOVA results appear in a set of tables (Secs. II-1V), where
cach table lists the hypothesis tested along with p-values and
their corresponding categorizations. The p-values are catego-
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rized in the following way: not significant (NS for p
>0.05), significant (S for p<<0.05), very significant (VS for
p<0.01), and extremely significant (ES for p<<0.001). Each
p-value table is followed by a second table, which contains
the mean values of overlap, accuracy, sensitivity, and speci-
ficity for each group. Sections II and III are identical regard-
ing the experiments, however, the pathologies of the masses

1. Segmentation results

are different (Sec. Il—malignant masses, Sec. lII—benign
masses). Although the experiments are identical they have
been separated for clarity purposes.

A larger set of segmentation results has been placed in an
image gallery containing 7 malignant mass results (Fig. 7)
and 7) benign mass results (Fig. 8). These figures are located
in the Appendix.

2. ANOVA test results for comparison of contour groups with single observer: Malignant cases

TABLE II. Single observer results (expert A gold standard, malignant masses).

P-value P-value P-value
(group I vs (group 2 vs (group 1 vs
ANOVA test group 2) group 3) group 3)
Difference between groups (overlap) 1.78X 1071 (ES) 2.91X1072(8) NS
Difference between groups (accuracy) NS 3.14X 1072 (S) NS

Difference between groups (sensitivity)

specificity)

Difference between groups

1.88X 1077 (ES) NS
5.12%107* (ES)

1.85x 10715 (ES)

240X 1073 (VS) 2.71x 1077 (ES)

TaBre III. Mean values for overlap, accuracy, sensitivity, and specificity (expert A gold standard, malignant

masses).

Mean value

Mean value Mean value

Measurement (group 1) (group 2) (group 3)
Overlap 0.47 0.60 0.53
Accuracy 0.88 0.90 0.87
Sensitivity 0.49 0.75 0.81
Specificity 0.99 0.94 0.88
TABLE IV. Single observer results (expert B gold standard, malignant masses).
P-value P-value P-value
(group 1 vs (group 2 vs (group 1 vs
ANOVA test group 2) group 3) group 3)
Difference between groups (overlap) 3.96x107° (ES) NS 1.58%x107*
Difference between groups (accuracy) NS NS NS
Difference between groups (sensitivity) 4.88X 1078 (ES) 431X1072(8S) 425X10712 (ES)
Difference between groups (specificity) 2.70x107* (ES) 436X 107* (ES) 1.44x 1077 (ES)

TABLE V. Mean values for overlap, accuracy, sensitivity, and specificity

(expert B gold standard, malignant masses).

Mean value

Mean value Mean value

Measurement (group 1)
Overlap 0.38
Accuracy 0.83
Sensitivity 0.38
Specificity 1.00

(group 2) (group 3)
0.54 0.51
0.86 0.84
0.56 0.60
0.98 0.94
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3. ANOVA test results for comparison of contour groups with single observer: Benign cases

TABLE VI. Single observer results (expert A gold standard, benign masses).

ANOVA test

P-value
(group 1 vs
group 2)

P-value
(group 2 vs
group 3)

P-value
(group 1 vs
group 3)

Difference between groups (overlap)
accuracy)

(
(
(sensitivity)
Difference between groups (specificity)

Difference between groups
Difference between groups

3.19%107* (ES)
NS

1.14X 1077 (ES)
893X 1073 (VS)

838X 107 (ES)
4.73% 1073 (VS)
1.89% 1072 (S)

1.24% 1077 (VS)

NS

2.51X1073(VS)
7.51x107Y7 (ES)
3.32%1071° (ES)

TaBLE VII. Mean values for overlap, accuracy, sensitivity, and specificity
(expert A gold standard, benign masses).

Mean value

Mean value

Mean value

Measurement (group 1) (group 2) (group 3)
Overlap 0.46 0.58 0.45
Accuracy 0.90 0.91 0.85
Sensitivity 0.49 0.73 0.82
Specificity 0.99 0.94 0.86
TaBLE VIII. Single observer results (expert B gold standard, benign masses).
P-value P-value P-value
(group 1 vs (group 2 vs (group 1 vs
ANOVA test group 2) group 3) group 3)
Difference between groups (overlap) 8.82X107° (ES) NS 1.62x 1072 (S)

Difference between groups (accuracy)
sensitivity)

specificity)

Difference between groups
Difference between groups

NS
1.61x 1077 (ES)

LISX 1072 (S)

2.62X1072(S)
NS
1.27X1072(S)

248X 1072 (S)
3.14X 10712 (ES)
1.25%1077 (ES)

TaBre IX. Mean values for overlap, accuracy, sensitivity, and specificity
(expert B gold standard, benign masses).

Measurement

Mean value
(group 1)

Mean value
(group 2)

Mean value
(group 3)

Overlap
Accuracy
Sensitivity
Specificity

0.36
0.88
0.36
0.99

0.51
0.89
0.61
0.94

0.44
0.83
0.69
0.86
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4. ANOVA test results for comparison of contour groups between two observers
TaBrLe X. Two observer results: expert A vs expert B, malignant masses.
P-value P-value P-value
(group 1 vs (group 2 vs (group 1 vs
ANOVA test group 2) group 3) group 3)
Expert A vs expert B (overlap) 312X 1073 (VS) 3.32% 1072 (S) NS
Expert A vs expert B (accuracy) 1.20% 1072 (S) 446X 1072 (S) NS
Expert A vs expert B (sensitivity) 9.43X 107" (ES) 338X 107* (ES) 3.67X 107" (ES)
Expert A vs expert B (specificity) NS NS NS
TaBLE XI. Mean values for overlap, accuracy, sensitivity, and specificity (expert A vs expert B, malignant masses).
Mean Mean Mean Mean Mean Mean
value, value, value, value, value, value,
expert A expert B expert A expert B expert A expert B
Measurement (group 1) (group 1) (group 2) (group 2) (group 3) (group 3)
Overlap 0.49 0.38 0.62 0.55 0.55 0.51
Accuracy 0.89 0.83 0.91 0.87 0.87 0.84
Sensitivity 0.52 0.38 0.75 0.60 0.82 0.68
Specificity 0.99 1.00 0.95 0.97 0.89 091
TaBre XII. Two observer results: expert A vs expert B, benign masses.
P-value P-value P-value
(group 1 vs (group 2 vs (group 1 vs
ANOVA test group 2) group 3) group 3)
Expert A vs expert B (overlap) NS NS NS
Expert A vs expert B (accuracy) NS NS NS
Expert A vs expert B (sensitivity) 3.56X 1072 (S) 4.90x 1072 (S) 203X 1072 (8S)
Expert A vs expert B (specificity) NS NS NS
TaBLe XIII. Mean values for overlap, accuracy, sensitivity, and specificity: expert A vs expert B, benign masses.
Mean Mean Mean Mean Mean Mean
value, value, value, value, value, value,
expert A expert B expert A expert B expert A expert B
Measurement (group 1) (group 1) (group 2) (group 2) (group 3) (group 3)
Overlap 0.42 035 0.57 0.50 0.48 0.44
Accuracy 0.90 0.88 0.91 0.89 0.85 0.83
Sensitivity 0.44 0.36 0.71 0.61 0.79 0.69
Specificity 0.99 0.99 0.94 0.94 0.86 0.86
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IV. DISCUSSION
A. Segmentation results

The ROT’s shown in Figs. 3 and 4 demonstrate that the
intensity produced by the maximum value is capable of ac-
curately delineating the mass body contour, and in some
cases this intensity corresponding to the maximum value
produces a contour, which falls inside the mass body contour.
This situation can be problematic because low segmentation
sensitivities can produce large errors during the feature cal-
culation and classification phases of CAD,. Of the three
available segmentation choices for each mass, it appears that
the first steepest change location produces the contours with
the strongest correlation in comparison to both gold stan-
dards. These contours appear to cover both the mass body
contour as well as the extended borders. In some instances
the region grows into some areas that are not declared as
mass arcas by the gold standards—we call this flooding—
and fails to grow into other areas that have been declared as
mass areas. Finally, the second steepest change location pro-
duces contours that also cover both the mass body contour as
well as the extended borders, and, these contours tend to also
include surrounding fibroglandular tissue; hence, the flood-
ing phenomenon is a common occurrence. In the cases
shown, it is clear that steepest change location 1 produces the
best contours, in comparison to the gold standards, however,
the ANOVA test results allow us to make such a claim. The
following discussion is divided into five sections: single ob-
server malignant results, single observer benign results, and
two observer results (malignant and benign), algorithm per-
formance, and an additional discussion on methods.

B. Malignant cases with single observer

For both the expert A and expert B gold standards, Tables
-V show a statistically significant difference between
groups | and 2 on the basis of overlap and sensitivity, where
the mean values of group 2 were higher than the mean values
of group 1 for these statistics. These results are expected
because as shown in the figures, the group 2 contours con-
sistently covered more of the mass area (and correctly cov-
ered this mass area) as compared to the group 1 contours,
according to both experts. There was a statistically signifi-
cant difference in sensitivity between group 1 and group 3,
where the mean of group 3 was higher than the mean of
group 1. This difference is an expected result because out of
all the groups, group 3 contours consistently covered the
most mass area. For the expert B gold standard there was a
statistically significant difference in overlap between group 1
and group 3, where the mean of group 3 was higher than the
mean of group 1. This difference is also an expected result
because, out of all the groups, the group 3 contours covered
the most mass area correctly.

C. Benign cases with single observer

For the expert A traces there were statistically significant
differences between the group 2 and group 3 traces on the
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basis of overlap, accuracy, and sensitivity, where the group 2
mean values for overlap and accuracy were higher than those
of group 3 (see Tables VI-IX). This difference is an ex-
pected result because it is likely that many of the group 3
contours contained flooded areas, which cause both of these
values to be lower than those values of contours without
flooded areas. The overlap and sensitivity values for group 2
were significantly higher than those of group 1. This differ-
ence is also an expected result because the group 2 contours
not only covered more mass area but also covered this area
correctly. Finally, the group 3 accuracy and sensitivity values
were significantly higher than those for group 1. Again this
difference is an expected result because the group 3 contours
not only covered more mass area but they also covered this
area correctly.

For the expert B gold standard there were statistically
significant differences between the group 2 and group 3
traces on the basis of accuracy and sensitivity, where the
group 2 mean values for overlap and accuracy were higher
than those of group 3. This difference is an expected result
because it is likely that many of the group 3 contours con-
tained flooded areas, which cause both of these values to be
lower than contours without flooded areas. There were sta-
tistically significant differences between group 1 and group 2
on the basis of overlap and sensitivity, where the mean val-
ues for group 2 were higher than the mean values for group
1. This is an expected result because the group 2 contours not
only covered more mass area but they also covered this area
correctly. There were statistically significant differences be-
tween group 3 and group | on the basis of overlap and sen-
sitivity, where the mean values for group 3 were higher than
those of group 1. Again this difference is an expected result
because the group 3 contours not only covered more mass
area but they covered this area correctly.

In nearly all cases for the single observer studies, it was
expected that the specificity values for group 1 would always
be higher than those for groups 2 and 3 because this contour
always covered the smallest mass area; consequently its
background was always highly correlated with the back-
ground arecas dictated by the gold standards. Moreover, in
some cases the group 2 and group 3 contours grew into areas
that were not regarded as mass, but rather were regarded as
background; therefore, their specificity values had a lower
correlation with the gold standard as compared to the group
1 contours.

D. Malignant and benign cases with two observers

For the two observer studies, comparisons were made be-
tween experts A and B on a group-by-group basis in an effort
to prove that there were significant differences between the
two radiologists on the basis of overlap, accuracy, sensitivity,
and specificity (see Tables X-XIII). For the malignant
masses, there were statistically significant differences be-
tween the two experts on the basis of overlap, accuracy, and
sensitivity. There was a statistically significant difference be-
tween the two experts for group 3 on the basis of sensitivity.
For the benign masses, there were statistically significant dif-
ferences between the two experts for all three groups on the
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basis of sensitivity. For all cases, expert A’s values were con-
sistently higher than those of expert B. These statistically
significant differences between the experts were expected
due to their differences in opinion. The fact that expert A’s
mean values were higher than those for expert B, however,
does not warrant the conclusion that expert A is a more reli-
able expert; however, it does warrant the conclusion that
there is stronger agreement between the computer’s results
and expert A’s traces. Furthermore, there were less statisti-
cally significant differences for the benign cases than for the
malignant cases. This result is expected because, in general,
benign masses have better defined borders, and thus the two
experts were more likely to agree.

E. Algorithm performance

Apparently the chosen thresholds produce first steepest
change location intensities that generate contours closely
correlated with the expert traces. In some instances the sec-
ond steepest change location is extremely far from the first
steepest change location, which implies that the function in
question increases very slowly; moreover, many of the sec-
ond steepest change location intensities produce contours
with flooded areas. For the majority of the cases in which the
second steepest change location contour achieves a higher
sensitivity value, but not a significantly higher sensitivity
value, we can still choose the first steepest change location
contour because the difference between the two contours is
likely to be negligible.

In analyzing the probability-based cost functions, we
found that those functions with very steep changes are typi-
cally associated with masses that have well-defined borders
while those functions that increase slowly are associated
with masses that have ill-defined borders. This phenomenon
may make it necessary to develop an adaptive threshold pro-
cess for the steepest change evaluation such that the func-
tions are grouped into various categories (e.g., smooth versus
steep), because a threshold value that is optimal for a steep
function may not be optimal for a smooth function.

F. Additional discussion on methods used

In this study the steepest descent method appears to have
the advantage of locating ill-defined margins as well as ex-
tensions such as malignant spiculations and projections for
mammographic masses. If solely the human eye is used, it
can be difficult to separate the mass from the surrounding
fibroglandular tissue. Therefore, this method has the poten-
tial to complement the process of reading mammographic
films. One of the downfalls of the method is its dependence
upon the assumption that masses are generally light in color.
This assumption impedes the region growing process be-
cause masses that contain darker areas and are surrounded on
one or more sides by bright tissue can cause contours to
flood into areas that are not actual mass tissue. Typically, this
situation occurs for the mass located on the border of the
breast region on a mammogram.

All of the segmentation methods surveyed in the introduc-
tion of this paper are excellent solutions for the problems
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their authors set out to solve, however, in some cases it is
difficult to make comparisons between different methods
without the availability of a set of several visual results. In
some studies, the focus was either to detect masses or to
distinguish malignant from benign masses. Thus, the valida-
tion process did not take the form of a comparison with
expert radiologist manual traces; but rather, features were
calculated on the potential mass candidates and they were
later classified as being mass tissue or normal tissue.'’ "
The purpose of Li’s study'* was to distinguish between nor-
mal and abnormal tissue; thus the authors did not provide
any statistics such as overlap or accuracy. Nevertheless, the
study contains a figure of 60 masses that contain both com-
puter and radiologist annotations to give the reader an idea of
the computer algorithm’s performance. Te Brake and Karsse-
meijer’s study’ used the overlap statistic to test the efficacy
of their method. They indicated that the central mass area
was delineated by the radiologist and their computer results
were compared to these annotations. The Kupinski and Giger
study'® also used the overlap statistic to test the efficacy of
their method and set a threshold for which the mass was
considered to be successfully segmented. For example,
masses whose overlap values are greater than 0.7 imply that
there was successful segmentation.

The technical method presented herein shows that the re-
sults obtained from the maximization of the composed prob-
ability density function (i.e., the cost function) are equivalent
to those obtained from previous methods presented by pre-
vious investigators. However, the steepest change of the
composed probability density function is the closest to radi-
ologists’ determinations.

V. CONCLUSION

We have shown that our fully automatic boundary detec-
tion method for malignant and benign masses can effectively
delinecate these masses using intensities, that correspond to
the first steepest change location within their cost functions.
Additionally, the method appears to be more highly corre-
lated with one set of expert traces than with a second set of
expert traces, regarding the accuracy and overlap statistics.
This result shows that inter-observer variability can be an
important factor in segmentation algorithm design, and it has
motivated us to seck the opinions of more expert radiologists
to test the robustness of our algorithm. The second steepest
change location intensity will always yield contours with
higher sensitivity values, however, it behooves us to choose
the first steepest change location intensity because it avoids
the risk of choosing contours that contain substantial flood-
ing. In future work, a worthwhile study would run the ex-
periments for different threshold values in an effort to dis-
cover the possibility of deriving an optimal threshold
procedure. We believe that such a procedure would improve
the method of choosing optimal contours.
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APPENDIX A—GALLERY OF SEGMENTATION RESULTS
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