Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number PB2014-103454
Title Splice Length of Prestressing Strand in Field-Cast UHPC Connections.
Publication Date Feb 2014
Media Count 46p
Personal Author B. A. Graybeal
Abstract The development length of reinforcements embedded into ultra-high performance concrete (UHPC) can be significantly shorter than the lengths normally associated with conventional concrete. Shortening the development length of prestressing strand can allow for a redesign of some structural systems, including spliced girder and continuous-for-live-load bridges. Ultra-high performance concrete (UHPC), when used in field-cast connections between prefabricated bridge elements, can create robust connections which emulate monolithic components. This study investigated the development length of 0.5 and 0.6 inch (12.7 and 15.2 mm) diameter untensioned prestressing strands embedded in steel fiber and PVA fiber reinforced UHPC. The volumetric fiber content was 2 percent. A novel tension test method allowed for replication of the tension-tension stress state that would occur when two strands are lap spliced within a connection between two linear elements. The results suggest that, for the steel fiber reinforced UHPC, the 0.5 inch (12.7 mm) diameter strands can be fully developed within 20 inches (0.51 m) and the 0.6 inch (15.2 mm) diameter strands can be fully developed in approximately 24 inches (0.61 m). The 0.5 inch (12.7 mm) diameter strands can be fully developed in the PVA fiber reinforced UHPC in approximately 36 inches (0.91 m).
Keywords Bridges
Fiber reinforced concretes
High strength concretes
Prestressed concrete
Tensile properties
Ultra-high performance concrete(UHPC)

Source Agency Federal Highway Administration
NTIS Subject Category 50C - Construction Equipment, Materials, & Supplies
50A - Highway Engineering
Corporate Author Federal Highway Administration, McLean, VA. Office of Infrastructure Research and Development.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1412
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader