Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number PB2013-111156
Title Geosynthetic Reinforced Soil Performance Testing: Axial Load Deformation Relationships.
Publication Date Aug 2013
Media Count 172p
Personal Author J. E. Nicks M. T. Adams P. S. K. Ooi T. Stabile
Abstract The geosynthetic reinforced soil (GRS) performance test (PT), also called a mini-pier experiment, consists of constructing alternating layers of compacted granular fill and geosynthetic reinforcement with a facing element that is frictionally connected, then axially loading the GRS mass while measuring deformation to monitor performance. This large element load test provides material strength properties of a particular GRS composite built with unique combinations of reinforcement, compacted fill, and facing elements. This report describes the procedure and provides axial load-deformation results for a series of PTs conducted in both Defiance County, OH, as part of the Federal Highway Administration's (FHWA) Every Day Counts (EDC) GRS Validation Sessions and in McLean, VA, at the FHWA's Turner-Fairbank Highway Research Center as part of a parametric study. The primary objectives of this research report are to: (1) build a database of GRS material properties that can be used by designers for GRS abutments and integrated bridge systems; (2) evaluate the relationship between reinforcement strength and spacing; (3) quantify the contribution of the frictionally connected facing elements at the service limit and strength limit states; (4) assess the new internal stability design method proposed by Adams et al. 2011 for GRS; and (5) perform a reliability analysis of the proposed soil-geosynthetic capacity equation for LRFD calibration.
Keywords Axial load
Calibration
Construction
Deformation
Geosynthetic reinforced soil(GRS)
Material properties
Monitoring
Performance tests
Reinforcing materials
Reliability
Soil stabilization
Soils
Strength

 
Source Agency Federal Highway Administration
NTIS Subject Category 50D - Soil & Rock Mechanics
Corporate Author Federal Highway Administration, McLean, VA. Office of Infrastructure Research and Development.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1325
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader