The NTIS website and supporting ordering systems are undergoing a major upgrade from 8PM on September 25th through approximately October 6. During that time, much of the functionality, including subscription and product ordering, shipping, etc., will not be available. You may call NTIS at 1-800-553-6847 or (703) 605-6000 to place an order but you should expect delayed shipment. Please do NOT include credit card numbers in any email you might send NTIS.
Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number PB2013-108405
Title Hydraulic Performance of Small Scale Bridge Deck Drains.
Publication Date Mar 2013
Media Count 112p
Personal Author M. Barrett Q. Qian R. Charbeneau X. Liu
Abstract Efficient removal of stormwater runoff from bridge deck surfaces is an important safety issue. This study investigates hydraulic performance characteristics of a new type of rectangular bridge deck drain. A physical modeling study was conducted to evaluate the hydraulic performance of the innovative rectangular bridge deck drain as a function of the approach discharge, different drain configurations, and bridge characteristics. Experiments included different numbers of open drains in series for variable approach discharge cross slope and longitudinal slope. Measurements included gutter flow depth (Y) and ponding width (T) at different stations along the deck, and the capture discharge and bypass discharge. A model equation is presented for predicting the capture discharge as a function of drain size (L+W), the number of open drains (N), Mannings coefficient (n), depth of approached gutter flow (Y), longitudinal slope (S0), and cross slope (Sx). For experiments considering one through five drains in series (1-5 drains), the rating curve for each individual drain is the same when the drain size is 4 by 8 inches; however, the rating curve decreases slightly with successive drains when the drain size is 6 by 8 inches.
Keywords Approach discharge
Bridge decks
Capture discharge
Flow depth
Performance evaluation
Storm water runoff

Source Agency Federal Highway Administration
NTIS Subject Category 50A - Highway Engineering
85H - Road Transportation
43G - Transportation
91B - Transportation & Traffic Planning
Corporate Author Texas Univ. at Austin. Center for Transportation Research.
Document Type Technical report
Title Note Technical rept.
NTIS Issue Number 1318
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader