Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number N20130008672
Title Assessing Tsunami Vulnerabilities of Geographies with Shallow Water Equations.
Publication Date Mar 2012
Media Count 10p
Personal Author R. Aras Y. Shen
Abstract Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to showcase ideas.
Keywords Disasters
Flow equations
Geography
Hyperbolic differential equations
Navier-stokes equation
Shallow water
Tsunami waves
Vulnerability
Wave propagation


 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 72 - Mathematical Sciences
47B - Dynamic Oceanography
91I - Emergency Services & Planning
Corporate Author Old Dominion Univ., Norfolk, VA.
Document Type Conference proceedings
Title Note N/A
NTIS Issue Number 1318
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader