Accession Number N20130008667
Title High Resolution Visualization Applied to Future Heavy Airlift Concept Development and Evaluation.
Publication Date Mar 2012
Media Count 8p
Personal Author A. B. FordCook T. King
Abstract This paper explores the use of high resolution 3D visualization tools for exploring the feasibility and advantages of future military cargo airlift concepts and evaluating compatibility with existing and future payload requirements. Realistic 3D graphic representations of future airlifters are immersed in rich, supporting environments to demonstrate concepts of operations to key personnel for evaluation, feedback, and development of critical joint support. Accurate concept visualizations are reviewed by commanders, platform developers, loadmasters, soldiers, scientists, engineers, and key principal decision makers at various stages of development. The insight gained through the review of these physically and operationally realistic visualizations is essential to refining design concepts to meet competing requirements in a fiscally conservative defense finance environment. In addition, highly accurate 3D geometric models of existing and evolving large military vehicles are loaded into existing and proposed aircraft cargo bays. In this virtual aircraft test-loading environment, materiel developers, engineers, managers, and soldiers can realistically evaluate the compatibility of current and next-generation airlifters with proposed cargo.
Keywords Cargo
Feedback
Graphs(Charts)
High resolution
Joints(Junctions)
Payloads
Three dimensional models
Transport aircraft


 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 72 - Mathematical Sciences
Corporate Author National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
Document Type Conference proceedings
Title Note N/A
NTIS Issue Number 1318
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader