Accession Number N20130003224
Title Atmospheric Turbulence Estimates from a Pulsed Lidar.
Publication Date Jan 2013
Media Count 14p
Personal Author D. P. Delisi F. H. Proctor M. J. Pruis N. N. Ahmad
Abstract Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.
Keywords Atmospheric turbulence
Boundary layers
Convection
In situ measurement
Mesoscale phenomena
Optical radar
Radar measurement
Simulation
Vortices


 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 85D - Transportation Safety
85A - Air Transportation
Corporate Author National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
Document Type Conference proceedings
Title Note N/A
NTIS Issue Number 1318
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader