The NTIS website and supporting ordering systems are undergoing a major upgrade from 8PM on September 25th through approximately October 6. During that time, much of the functionality, including subscription and product ordering, shipping, etc., will not be available. You may call NTIS at 1-800-553-6847 or (703) 605-6000 to place an order but you should expect delayed shipment. Please do NOT include credit card numbers in any email you might send NTIS.
Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number N20120017895
Title All-Sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data.
Publication Date Oct 2011
Media Count 18p
Personal Author B. Allen B. P. Abbott C. Adams C. Affeldt D. Amariutei E. Amador Ceron F. Acernese G. S. Allen J. Abadie J. Cannizzo J. B. Camp K. Arai L. Blackburn M. Abernathy M. C. Araya M. S. Arain P. Ajith R. Abbott R. Adhikari R. S. Amin S. B. Anderson S. M. Aston T. Accadia T. D. Abbott W. G. Anderson
Abstract We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(exp -9) Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data. collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(sub 0) is 1 x 10(exp -24), while at the high end of our frequency ra.nge we achieve a worst-case upper limit of 3.8 x 10(exp -24) for all polarizations and sky locations. These results constitute a factor of two improvement upop. previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long.period binary companion.
Keywords Algorithms
Data acquisition
Frequency modulation
Gravitational waves
Signal to noise ratios

Source Agency National Aeronautics and Space Administration
NTIS Subject Category 54B - Astronomy & Celestial Mechanics
Corporate Author Goddard Space Flight Center, Greenbelt, MD.
Document Type Journal article
Title Note N/A
NTIS Issue Number 1313
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader