Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number N20120012527
Title Heated-Atmosphere Airship for the Titan Environment: Thermal Analysis.
Publication Date Jul 2012
Media Count 14p
Personal Author A. F. Hepp A. J. Colozza G. A. Landis R. S. Heller
Abstract Future exploration of Saturn's moon Titan can be carried out by airships. Several lighter-than-atmosphere gas airships and passive drifting heated-atmosphere balloon designs have been studied, but a heated-atmosphere airship could combine the best characteristics of both. This work analyses the thermal design of such a heated-atmosphere vehicle, and compares the result with a lighter-than-atmosphere (hydrogen) airship design. A design tool was created to enable iteration through different design parameters of a heated-atmosphere airship (diameter, number of layers, and insulating gas pocket thicknesses) and evaluate the feasibility of the resulting airship. A baseline heated-atmosphere airship was designed to have a diameter of 6 m (outer diameter of 6.2 m), three-layers of material, and an insulating gas pocket thickness of 0.05 m between each layer. The heated-atmosphere airship has a mass of 161.9 kg. A similar mission making use of a hydrogen-filled airship would require a diameter of 4.3 m and a mass of about 200 kg. For a long-duration mission, the heated-atmosphere airship appears better suited. However, for a mission lifetime under 180 days, the less complex hydrogen airship would likely be a better option.
Keywords Airships
Design analysis
Heat generation
In situ resource utilization
Mission planning
Planetary atmospheres
Spacecraft design
Thermal analysis
Thermoelectric generators

Source Agency National Aeronautics and Space Administration
NTIS Subject Category 84G - Unmanned Spacecraft
84C - Manned Spacecraft
Corporate Author National Aeronautics and Space Administration, Cleveland, OH. NASA John H. Glenn Research Center at Lewis Field.
Document Type Conference proceedings
Title Note N/A
NTIS Issue Number 1303
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader