Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number N20120012421
Title Observations of Low-Latitude Plasma Density Enhancements and their Associated Plasma Drifts.
Publication Date Feb 2011
Media Count 24p
Personal Author A. G. Burrell D. E. Rowland G. Le H. Freudenreich J. H. Klenzing R. A. Haaser R. A. Heelis R. A. Stoneback R. F. Pfaff W. R. Coley
Abstract Plasma density structures are frequently encountered in the nighttime low-latitude ionosphere by probes on the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. Of particular interest to us here are plasma density enhancements, which are typically observed +/- 15 deg away from the magnetic equator. The low inclination of the C/NOFS satellite offers an unprecedented opportunity to examine these structures and their associated electric fields and plasma velocities, including their field-aligned components, along an east-west trajectory. Among other observations, the data reveal a clear asymmetry in the velocity structure within and around these density enhancements. Previous observations have shown that the peak change in drift velocity associated with a density enhancement occurs simultaneously both perpendicular and parallel to the magnetic field, while the 1results in this paper show that the peak change in parallel fl ow typically occurs 25-100 km to the east of the peak perpendicular ow. We discuss this and other aspects of the observations in relation to the characteristics of the plasma depletions formed near the magnetic equator detected by the same probes on the C/NOFS satellite and to previous observations and theories.
Keywords Atmospheric scattering
Ionospheric f-scatter propagation
Ionospheric storms
Magnetic fields
Plasma density
Plasma drift
Satellite observation
Signal fading
Spread f
Tropical regions

Source Agency National Aeronautics and Space Administration
NTIS Subject Category 55A - Aeronomy
Corporate Author Goddard Space Flight Center, Greenbelt, MD.
Document Type Journal article
Title Note N/A
NTIS Issue Number 1303
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader