The NTIS website and supporting ordering systems are undergoing a major upgrade from 8PM on September 25th through approximately October 6. During that time, much of the functionality, including subscription and product ordering, shipping, etc., will not be available. You may call NTIS at 1-800-553-6847 or (703) 605-6000 to place an order but you should expect delayed shipment. Please do NOT include credit card numbers in any email you might send NTIS.
Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number N20120010371
Title Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica.
Publication Date Sep 2011
Media Count 15p
Personal Author D. G. Vaughan P. Vornberger R. Bindschadler
Abstract Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.
Keywords Basalt
Glaciers
Land ice
Landsat satellites
Melting
Position(Location)
Satellite imagery
Surface waves
Troughs
Voids


 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 55A - Aeronomy
Corporate Author Goddard Space Flight Center, Greenbelt, MD.
Document Type Journal article
Title Note N/A
NTIS Issue Number 1226
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader