Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number N20120010143
Title Outer Limits of Galaxy Clusters: Observations to the Virial Radius with Suzaku, XMM,and Chandra.
Publication Date 2012
Media Count 8p
Personal Author D. Davis E. D. Miller J. George J. P. Henry M. Bautz R. Mushotzky
Abstract The outskirts of galaxy clusters, near the virial radius, remain relatively unexplored territory and yet are vital to our understanding of cluster growth, structure, and mass. In this presentation, we show the first results from a program to constrain the sate of the outer intra-cluster medium (ICM) in a large sample of galaxy clusters, exploiting the strengths of three complementary X-ray observatories: Suzaku (low, stable background), XMM-Newton (high sensitivity),and Chandra (good spatial resolution). By carefully combining observations from the cluster core to beyond r200, we are able to identify and reduce systematic uncertainties that would impede our spatial and spectral analysis using a single telescope. Our sample comprises nine clusters at z is approximately 0.1-0.2 fully covered in azimuth to beyond r200, and our analysis indicates that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see clear azimuthal variations in temperature and surface brightness. In one of the clusters, we are able to measure the diffuse X-ray emission well beyond r200, and we find that the entropy profile and the gas fraction are consistent with expectations from theory and numerical simulations. These results stand in contrast to recent studies which point to gas clumping in the outskirts; the extent to which differences of cluster environment or instrumental effects factor in this difference remains unclear. From a broader perspective, this project will produce a sizeable fiducial data set for detailed comparison with high-resolution numerical simulations.
Keywords Azimuth
Brightness
Comparison
Emission
Galactic clusters
Interstellar matter
Spectrum analysis
Telescopes
Virial theorem

 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 54C - Astrophysics
63F - Optical Detection
46C - Optics & Lasers
Corporate Author Goddard Space Flight Center, Greenbelt, MD.
Document Type Journal article
Title Note N/A
NTIS Issue Number 1226
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader