Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number N14-0003943
Title Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane.
Publication Date Sep 2013
Media Count 21p
Personal Author D. S. Jones J. H. Ruf T. T. Bui
Abstract For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.
Keywords Altitude tests
F-15 aircraft
Flight tests
Flow distribution
Low earth orbits
Nozzle design
Nozzle efficiency
Nozzle flow
Nozzle geometry
Performance prediction
Performance tests
Propulsion
Rocket nozzles


 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 51C - Aircraft
46A - Acoustics
68B - Noise Pollution & Control
Corporate Author National Aeronautics and Space Administration, Edwards, CA. Hugh L. Dryden Flight Research Center.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1421
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader