Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number N14-0000070
Title Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses.
Publication Date Jun 2013
Media Count 10p
Personal Author C. M. Fremaux L. J. Glaab
Abstract Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley.s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE.s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.
Keywords Aerodynamic characteristics
Aerodynamic stability
Aerospace vehicles
Atmospheric entry
Atmospheric entry simulation
Blunt bodies
Degrees of freedom
Design analysis
Dynamic stability
Thermal protection

 
Source Agency National Aeronautics and Space Administration
NTIS Subject Category 51A - Aerodynamics
84C - Manned Spacecraft
84G - Unmanned Spacecraft
Corporate Author National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
Document Type Conference proceedings
Title Note N/A
NTIS Issue Number 1416
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader