Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number DE2013-1022665
Title Engineering Design Issues of a Low Aspect Ratio Tokamak Volumetric Neutron Source.
Publication Date 2012
Media Count 5p
Personal Author B. E. Nelson E. A. Mogahed E. T. Chang I. N. Sviatoslavsky P. J. Fogarty R. J. Cerbone Y. K. M. Peng
Abstract Engineering design issues of a volumetric neutron source (VNS) based on a steady state low aspect ratio DT tokamak are presented. At the present the major radius is 0.8 m, the minor radius 0.6 m for an aspect ratio of 1.33, the plasma current is 10.1 MA, the toroidal field at the major radius is 1.8 T, the fusion power is 39 MW giving an average neutron wall loading of 1.0 MW/m2 on the outboard side with an available testing area of 10 m2.Two neutral beams delivering more than 20 MW are used to drive the steady state fusion plasma. A single turn unshielded water cooled dispersion strengthened (DS) Cu centerpost is used in conjunction with a conducting Cu bell jar which acts as a vacuum boundary and the return legs for the toroidal field (TF) coils. The centerpost is 9 m long, carries 7.2 MA and is specially shaped to minimize ohmic heating, which is calculated using temperature dependent DS Cu properties and increases in resistivity due to nuclear transmutations are accounted for. A naturally diverted plasma scrapeoff layer dominated by pressure-driven instabilities is assumed giving a peak heat flux of 5.2 MW1m2 on the diverter plates. Fabrication approaches for the centerpost and its replacement time lines have been estimated to be feasible and reasonable.
Keywords Aspect ratio
Electric currents
Heat flux
Neutron sources
Plasma density
Thermonuclear reactors
Tokamak devices
Wall loading

Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 77A - Thermonuclear Fusion Devices
46G - Plasma Physics
Corporate Author Oak Ridge National Lab., TN.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1323
Contract Number DE-AC05-00OR22725

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader