Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number DE2012-1054146
Title Johnson Noise Thermometry for Advanced Small Modular Reactors.
Publication Date Sep 2012
Media Count 16p
Personal Author C. L. Britton D. E. Holcomb M. Roberts N. D. Bull R. T. Wood
Abstract Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor's physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.
Keywords Noise thermometers
Nuclear power plants
Nuclear reactors
Radiation pyrometers
Reactor cores
Research and development
Small modular reactors(SMRs)
Temperature measurement

Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 77H - Reactor Engineering & Nuclear Power Plants
Corporate Author Oak Ridge National Lab., TN.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1308
Contract Number DE-AC05-00OR22725

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader