Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number DE2012-1045617
Title Hydraulic Conductivity of Saltstone Formulated Using 1Q11, 2Q11 and 3Q11 Tank 50 Slurry Samples.
Publication Date Jun 2012
Media Count 16p
Personal Author M. M. Reigel R. L. Nichols
Abstract As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).
Keywords Fly ash
Hydraulic conductivity
Radioactive waste management
Radioactive wastes
Savannah River Plant

Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 77G - Radioactive Wastes & Radioactivity
Corporate Author Savannah River National Lab., Aiken, SC. Savannah River Nuclear Solutions.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1303
Contract Number DE-AC09-08SR22470

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader