Accession Number DE2012-1045206
Title LCLS-II New Instruments Workshops Report.
Publication Date Jul 2012
Media Count 78p
Personal Author H. Durr J. Goldstein J. Hastings J. Stohr K. Gaffney M. Guehr M. Seibert P. Heimann R. Lee S. Baradaran U. Bergmann
Abstract The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and heterogeneous catalysis. Of particular interest is the efficient conversion of light to electrical or chemical energy, which requires understanding the non-adiabatic dynamics of electronic excited states. Ultrafast x-ray scattering presents an excellent opportunity to investigate structural dynamics of molecular systems with atomic resolution, and x-ray scattering and spectroscopy present an excellent opportunity to investigating the dynamics of the electronic charge distribution. Harnessing solar energy to generate fuels, either indirectly with photovoltaics and electrochemical catalysis or directly with photocatalysts, presents a critical technological challenge that will require the use of forefront scientific tools such as ultrafast x-rays.
Keywords Accelerators
Charge distribution
Composite materials
Degree of freedom
Electron correlation
Fermilab accelerator
Phase space
Solar energy

Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 46 - Physics
Corporate Author Stanford Linear Accelerator Center, Menlo Park, CA. Theory Group.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1302
Contract Number DE-AC02-76SF00515

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader