Accession Number DE2012-1045177
Title Booster Synchrotron RF System Upgrade for SPEAR3.
Publication Date Jul 2012
Media Count 3p
Personal Author J. Corbett S. Park
Abstract Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.
Keywords Accelerators
Design
Efficiency
Klystrons
Rf systems
Synchrotrons

 
Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 46 - Physics
Corporate Author Stanford Linear Accelerator Center, CA.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1303
Contract Number DE-AC02-76SF00515

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader