Accession Number DE2012-1038897
Title Dielectric-Lined High-Gradient Accelerator Structure.
Publication Date Apr 2012
Media Count 45p
Personal Author J. L. Hirshfield
Abstract Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ((approx)2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10(sup 5) RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M(Omega)/m for DLA, as compared to 99 M(Omega)/m for HDS.
Keywords Amplifiers
Breakdown
Bypasses
Cavities
Diamonds
Dielectric fields
Electric fields
Heating
Impedance
Magnetic fields
Particle accelerators
Peak load
Performance
Physics
Probability
Thermal conductivity


 
Source Agency Technical Information Center Oak Ridge Tennessee
NTIS Subject Category 46 - Physics
71 - Materials Sciences
Corporate Author Omega-P, Inc., New Haven, CT.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1226
Contract Number DE-FG02-05ER84368

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader