Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number ADA585458
Title Implementation of Structures in the CMS: Part 4, Tide Gate.
Publication Date Aug 2013
Media Count 12p
Personal Author A. Sanchez H. Li W. Wu
Abstract This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the mathematical formulation, numerical implementation, and input specifications of tide gates in the Coastal Modeling System (CMS) operated through the Surface-water Modeling System (SMS). A coastal application at an idealized inlet is provided to illustrate the implementation procedure and demonstrate the model capability. A tide gate is an opening structure built across a river or a channel in an estuarine system. By preventing saltwater intrusion to farm land and allowing freshwater drainage to the estuary, tide gates are commonly used for flow and flooding control, and salinity and sediment management (Figure 1). Because a tide gate is a significant component of hydrodynamic and sediment transport controls in the coastal zone, it is important to incorporate the structure and to simulate its effect in the CMS. The CMS, developed by the Coastal Inlets Research Program (CIRP), is an integrated suite of numerical models for simulating water surface elevation, current, waves, sediment transport, and morphology change in coastal and inlet applications. It consists of a hydrodynamic and sediment transport model, CMS- Flow, and a spectral wave model CMS-Wave (Sanchez et al. 2011a; Sanchez et al. 2011b; Lin et al. 2011). Both are described in Part I of this series (Li et al. 2013).
Keywords Cms(Coastal modeling system)
Sediment transport
Sms(Surface-water modeling system)
Tide gates

Source Agency Non Paid ADAS
NTIS Subject Category 48G - Hydrology & Limnology
72B - Algebra, Analysis, Geometry, & Mathematical Logic
50B - Civil Engineering
Corporate Author Army Engineer Waterways Experiment Station, Vicksburg, MS. Coastal Hydraulics Lab.
Document Type Technical report
Title Note Technical note.
NTIS Issue Number 1403
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader