Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number ADA583679
Title Sea Surface Signature of Tropical Cyclones Using Microwave Remote Sensing.
Publication Date 2013
Media Count 16p
Personal Author B. Kil D. Burrage J. Wesson S. Howden
Abstract Measuring the sea surface during tropical cyclones (TC) is challenging due to severe weather conditions that prevent shipboard measurements and clouds which mask the sea surface for visible satellite sensors. However, sea surface emission in the microwave L-band can penetrate rain and clouds and be measured from space. The European Space Agency (ESA) MIRAS L-band radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite enables a view of the sea surface from which the effects of tropical cyclones on sea surface emissivity can be measured. The emissivity at these frequencies is a function of sea surface salinity (SSS), sea surface temperature (SST), sea surface roughness, polarization, and angle of emission. If the latter four variables can be estimated, then models of the sea surface emissivity can be used to invert SSS from measured brightness temperature (TB). Actual measured TB from space also has affects due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those have to be removed. In this research, we study the relationships between retrieved SSS from MIRAS, and SST and precipitation collected by the NASA TMI sensor from the Tropical Rainfall Measuring Mission (TRMM) satellite during Hurricane Isaac, in August 2012. During the slower movement of the storm, just before landfall on the vicinity of the Louisiana Shelf, higher precipitation amounts were associated with lower SSS and slightly increased SST. This increased trend of SST and lower SSS under regions of high precipitation are indicative of inhibited vertical mixing. The SMOS Level 2 SSS were filtered by a stepwise process with removal of high uncertainty in TB under conditions of strong surface roughness which are known to create noise.
Keywords Algorithms
Brightness
Microwave remote sensing
Microwaves
Ocean surface
Precipitation
Remote detection
Salinity
Smos(Soil moisture and ocean salinity)
Sss(Sea surface salinity)
Sst(Sea surface temperature)
Tb(Brightness temperature)
Temperature
Tropical cyclones
Uncertainty


 
Source Agency Non Paid ADAS
NTIS Subject Category 55C - Meteorological Data Collection, Analysis, & Weather Forecast
47C - Physical & Chemical Oceanography
63 - Detection & Countermeasures
46H - Radiofrequency Waves
Corporate Author Naval Research Lab., Stennis Space Center, MS. Oceanography Div.
Document Type Journal article
Title Note Journal article.
NTIS Issue Number 1402
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader