Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number ADA582397
Title Photoacoustic Detection of Terahertz Radiation for Chemical Sensing and Imaging Applications.
Publication Date Mar 2013
Media Count 202p
Personal Author S. Blazevic
Abstract The main research objective is the development of photoacoustic sensor capable of detecting weak terahertz (THz) electromagnetic radiation. The feasibility of THz remote sensing is seen in the utilization of Microelectromechanical systems (MEMS) cantilever-based sensor. The overall sensing functionality of the detector in development is based on the photoacoustic spectroscopy and direct piezoelectric effect phenomena, as a result of which significant part of investigation has been conducted in the areas of terahertz electromagnetic radiation and its detection. The main focus of this research work was the detector analytical and Finite Element Method (FEM) simulation modeling, involving necessary material properties investigations and adequate selections which were, beside the sensors' geometry considerations, heavily engaged in the device modeling. Five different MEMS detector configurations have been analyzed and modeled as potential THz photoacoustic sensing options: Three configurations of rectangular shape, single piezoelectric layer cantilever-based sensors, Circular membrane sensing configuration and Square membrane sensing configuration. Some level of disagreement was discovered between the analytical and FEM simulated results, which has been analyzed and possible reasons were established. The obtained results indicated that the Square membrane has demonstrated the ability to respond effectively to any radiation level from the entire THz photoacoustic range exhibiting high sensitivity and thus was selected as the best terahertz photoacoustic sensing solution.
Keywords Chemical detection
Fem(Finite element method)
Finite element analysis
Images
Mems(Microelectromechanical systems)
Microelectromechanical systems
Photoacoustic detection
Radiation
Terahertz radiation

 
Source Agency Non Paid ADAS
NTIS Subject Category 54C - Astrophysics
63F - Optical Detection
46C - Optics & Lasers
Corporate Author Air Force Inst. of Tech., Wright-Patterson AFB, OH. Graduate School of Engineering and Management.
Document Type Thesis
Title Note Master's thesis.
NTIS Issue Number 1326
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader