The NTIS website and supporting ordering systems are undergoing a major upgrade from 8PM on September 25th through approximately October 6. During that time, much of the functionality, including subscription and product ordering, shipping, etc., will not be available. You may call NTIS at 1-800-553-6847 or (703) 605-6000 to place an order but you should expect delayed shipment. Please do NOT include credit card numbers in any email you might send NTIS.
Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number ADA567694
Title Using Multi-Angle WorldView-2 Imagery to Determine Ocean Depth Near Oahu, Hawaii.
Publication Date Sep 2012
Media Count 117p
Personal Author K. R. Lee
Abstract Multispectral imaging (MSI) data collected at multiple angles over shallow water provide analysts with a unique perspective of bathymetry in coastal areas. Observations taken by DigitalGlobe's WorldView-2 (WV-2) sensor acquired at 39 different view angles on 30 July 2011 were used to determine the effect of acquisition angle on derived depth. The site used for this study was on the island of Oahu, focused on Kailua Bay (on the windward side of the island). Satellite azimuth and elevation for these data ranged from 18.8 to 185.8 degrees and 24.9 (forward-looking) to 24.5 (backward-looking) degrees (respectively) with 90 degrees representing a nadir view. Bathymetry were derived directly from the WV-2 radiance data using a band ratio approach. Comparison of results to LiDAR-derived bathymetry showed that varying view angle impact the quality of the inferred bathymetry. Derived and reference bathymetry have a higher correlation as images are acquired closer to nadir. The band combination utilized for depth derivation also has an effect on derived bathymetry. Four band combinations were compared, and the Blue & Green combination provided the best results.
Keywords Atmospheric scattering
Coastal regions
Electromagnetic spectra
Optical properties
Radiative transfer
Shallow water
Wind direction

Source Agency Non Paid ADAS
NTIS Subject Category 47C - Physical & Chemical Oceanography
47B - Dynamic Oceanography
Corporate Author Naval Postgraduate School, Monterey, CA.
Document Type Thesis
Title Note Master's thesis.
NTIS Issue Number 1309
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader