Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website; (3) the federal government Internet portal; or (4) a web search conducted using a commercial search engine such as
Accession Number ADA564315
Title Boosting Information Fusion.
Publication Date Jul 2010
Media Count 9p
Personal Author C. Barbu G. Seetharaman J. Peng
Abstract Ensemble methods provide a principled framework for building high performance classifiers and representing many types of data. As a result, these methods can be useful for making inferences in many domains such as classification and multi-modal biometrics. We introduce a novel ensemble method for combining multiple representations (or views). The method is a multiple view generalization of AdaBoost. Similar to AdaBoost, base classifiers are independently built from each representation. Unlike AdaBoost, however, all data types share the same sampling distribution as the view whose weighted training error is the smallest among all the views. As a result, the most consistent data type dominates over time, thereby significantly reducing sensitivity to noise. In addition, our proposal is provably better than AdaBoost trained on any single type of data. The proposed method is applied to the problems of facial and gender prediction based on biometric traits as well as of protein classification. Experimental results show that our method outperforms several competing techniques including kernel-based data fusion.
Keywords Adaboost
Data fusion
Semi-definite programming
Weighting functions

Source Agency Non Paid ADAS
NTIS Subject Category 88B - Information Systems
62F - Pattern Recognition & Image Processing
Corporate Author Massachusetts Inst. of Tech., Lexington. Lincoln Lab.
Document Type Technical report
Title Note Conference paper.
NTIS Issue Number 1302
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader