Documents in the NTIS Technical Reports collection are the results of federally funded research. They are directly submitted to or collected by NTIS from Federal agencies for permanent accessibility to industry, academia and the public.  Before purchasing from NTIS, you may want to check for free access from (1) the issuing organization's website; (2) the U.S. Government Printing Office's Federal Digital System website http://www.gpo.gov/fdsys; (3) the federal government Internet portal USA.gov; or (4) a web search conducted using a commercial search engine such as http://www.google.com.
Accession Number ADA562371
Title Optimization of Highway Work Zone Decisions Considering Short-Term and Long-Term Impacts.
Publication Date 2010
Media Count 253p
Personal Author N. Yang
Abstract With the increase of the number, duration, and scope of maintenance projects on the national highway system, transportation agencies face great challenges in developing effective comprehensive work zone management plans which minimize the negative impacts on road users and workers. The types of maintenance operation, timing duration, configuration, and user impact mitigation strategies are major considerations in developing work zone management plans. Some of those decisions may not only affect road users during the maintenance phase but also have significant impacts on pavement serviceability in future years. This dissertation proposes a systematic methodology for jointly optimizing critical work zone decisions, based on analytical and simulation models developed to estimate short-term impacts during the maintenance periods and long-term impacts over the pavement life cycle. The dissertation starts by modeling the effects of different work zone decisions on agency and user costs during the maintenance phase. An analytic one-time work zone cost model is then formulated based on simulation analysis results. Next, a short-term work zone decision optimization model is developed to find the best combination of lane closure and traffic control strategies which can minimize the one-time work zone cost. Considering the complex and combinatorial nature of this optimization problem, a heuristic optimization algorithm, named two-stage modified population-based simulated annealing (2PBSA), is designed to search for a near-optimal solution. For those maintenance projects that may need more detailed estimation of user delay or other impacts, a simulation-based optimization method is proposed in this study. Through a hybrid approach combining simulation and analytic methods along with parallel computing techniques, the proposed method can yield satisfactory solutions while reducing computational efforts to a more acceptable level. The last part of this study establishes a framewo.
Keywords Algorithms
Combinatorial analysis
Computations
Configurations
Control
Cost models
Costs
Decision making
Delay
Estimates
Ground traffic
Heuristic methods
Highways
Hybrid systems
Impact
Maintenance
Management planning and control
Methodology
Models
Numerical methods and procedures
Operation
Optimization
Parallel processing
Pavements
Personnel
Roads
Scheduling
Searching
Simulation
Solutions(General)
Strategy
Time
Time intervals
Traffic
Transportation
User needs
Yield


 
Source Agency Non Paid ADAS
NTIS Subject Category 50B - Civil Engineering
85 - Transportation
91B - Transportation & Traffic Planning
43G - Transportation
Corporate Author Maryland Univ., College Park.
Document Type Technical report
Title Note N/A
NTIS Issue Number 1225
Contract Number N/A

Science and Technology Highlights

See a sampling of the latest scientific, technical and engineering information from NTIS in the NTIS Technical Reports Newsletter

Acrobat Reader Mobile    Acrobat Reader