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Use of Non-SI Units in a NIST Publication

It is the policy of the National Institute of Standards and Technology to use the International System of
Units (metric units) in all of its publications. However, in North America in the HVAC&R industry, non-
SI units are so widely used instead of SI units that it is more practical and less confusing to include
measurement values in customary units within some figures and tables.



BRIEF SUMMARY OF THE RESEARCH

System behavior of a R410A residential unitary split heat pump system was investigated. The system
was operated in cooling mode and used a thermostatic expansion valve (TXV) as the refrigerant
expansion device. Seven artificial faults were tested: compressor/reversing valve leakage, improper
outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant
overcharge, and presence of non-condensable gas in the refrigerant.

The no-fault test results were correlated to produce a reference model of 2™ order multivariate regressive
polynomials. The reference model used three independent variables, outdoor air temperature, indoor air
temperature, and indoor dew point temperature, to correlate all other heat pump features. Standard
deviations of liquid line refrigerant subcooling and evaporator exit refrigerant superheat were used as the
main indicators for a steady-state detector algorithm. From the no-fault reference model, heat pump
feature residuals were derived. Since the system was controlled by a TXV, the system could adapt itself
to considerable external variation. Thus faulty behavior was not as detectable as it would have been with
an orifice expansion device equipped system. The distinctiveness of a fault depended on the TXV status.
Heat exchanger faults’ effects upon performance depend on the sizing of the heat exchanger. From the
dynamic tests, the system showed that the most influential factor for dynamic behavior was the change of
the evaporator refrigerant exit temperature.
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top left to right: SCFMca — outdoor air flow rate, @ga; — indoor air inlet relative
humidity, Tgaop — indoor air exit dew point temperature, gegao — indoor air exit
relative humidity, SCFMg, — indoor air flow rate, Tsw — compressor suction wall
temperature, Tcgr; — condenser refrigerant inlet temperature, Pcr; — condenser
TEfTIZETaNt INLEE PIESSUIC. ... .eevieiieeieiieiteeie et esteeseestesreebeeseeseesseessaessseasseanseesseesseesssensns 80

Figure C.4. Selected parameters with the compressor/reversing valve leakage fault. From the
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Figure C.5. Selected parameters with the improper outdoor flow rate fault. From the top left to
right: SCFMca — outdoor air flow rate, @gga; — indoor air inlet relative humidity,
Teaop — indoor air exit dew point temperature, @geao — indoor air exit relative
humidity, SCFMg, — indoor air flow rate, Tsw — compressor suction wall
temperature, Tcr; — condenser refrigerant inlet temperature, Pcg; — condenser
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pressure drop; Tgr; — evaporator refrigerant inlet temperature, Prro — evaporator
refrigerant exit pressure, APgr — evaporator refrigerant pressure drop, ATy, — ATy ............ 83

Figure C.7. Selected parameters with the improper indoor flow rate fault. From the top left to
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Figure C.9. Selected parameters with the liquid line restriction fault. From the top left to right:
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CHAPTER 1. RATIONALE FOR THE STUDY

An increasing emphasis on energy saving and environmental conservation requires that air conditioners
and heat pumps be highly efficient. To this end, several government initiatives have been undertaken.
For example, the U.S. Environmental Protection Agency (EPA)’s Global Programs Division is
responsible for the assessment of alternative refrigerant performance and enforcement of the Clean Air
Act. Another prime example is the ENERGY STAR initiative, a program formulated by the EPA/Climate
Protection Partnerships Division and the Department of Energy (DOE), which promotes products that
offer energy efficiency gains and pollution reduction. Directly affecting residential equipment, a recent
DOE regulation imposes a 30 % increase in the minimum seasonal energy efficiency ratio (SEER) for
central air conditioners, from 10.0 to 13.0, beginning January 23, 2006 (Federal Register, 2001).

To assure that heating, ventilating, air-conditioning (HVAC) equipment operates in the field at its design
efficiency, the efforts exerted by equipment manufacturers to improve equipment SEER must be
paralleled in the field by good equipment installation and maintenance practices. However, a survey of
over 55000 residential and commercial units found the refrigerant charge to be incorrect in more than
60 % of the systems (Proctor, 2004). Another independent survey of 1500 rooftop units showed that the
average efficiency was only 80 % of the expected value, primarily due to improper refrigerant charge
(Rossi, 2004). A low refrigerant charge in the system may be due to a refrigerant leak or improper
charging during system installation. While the most common concern about a refrigerant leak is that a
greenhouse gas has been released to the atmosphere, a greater impact is caused by the additional CO,
emissions from fossil fuel power plants due to the lowered efficiency of the air-conditioning (AC) unit.

Proctor’s survey shows a correlation between the quality of installation and technician training and
supervision. Proper training of the technician is a necessary requirement for proper installation. But the
survey also showed clearly that the number of return calls to correct improper installation was lowest
when routine oversight of the installation work was provided, and that the number of faulty installations
markedly increased when post-installation inspection visits were eliminated. At present, the homeowner
has no quality assurance method for equipment installation as long as his/her comfort is not compromised.

The goal of this project is to study and develop fault detection and diagnostic (FDD) methods which
would provide a technician with a fault diagnosis and could alert a homeowner when performance of their
AC unit falls below the expected range, either during commissioning or post-commissioning operation.
For the homeowner, this FDD capability could be incorporated into a future smart thermostat where a
readout on performance would allow basic oversight of the service done on the unit and register the
effects of that service upon performance.

The benefits of FDD methods for ACs and HPs are numerous and they include;
- reduction of energy use
- reduction in peak demand of electricity
- reduction in CO, emissions from fossil fuel power plants
- reduction in refrigerant emissions from AC and HP systems
- reduction in down time and maintenance cost
- improvement of thermal comfort

Arguably, development of FDD methods for split equipment presents unique challenges because these
systems are assembled on site. Varied assembly skill levels and lack of attention to manufacturer
recommendations is the prime reason that automated FDD methods be developed. FDD will provide
“Automated Oversight” of servicing and warning of refrigerant charge loss, which is the most frequent



problem in field assembled systems. It should be noted that the refrigerant leak problem may become
even more frequent with the industry transition from medium pressure R22 to higher pressure R410A.

Fault detection and diagnosis is accomplished by comparing a system’s current performance or
parameters with those expected based on the measurements taken from the system when it was known to
operate fault-free. Consequently, FDD method development includes a laboratory phase during which
fault-free and faulty operations are mapped. The faults are artificially imposed to learn about the
system’s response to them. The analytical phase, which follows, is concerned with using the obtained
database to develop methods for fault detection and diagnosis. This report documents the laboratory
phase of the FDD study carried out on a residential heat pump operating in the cooling mode.

Fault detection and diagnosis has been effectively applied for some time in critical systems and processes,
e.g., aerospace and nuclear industry applications, and in chemical processes. FDD methods for
HVAC&R systems have been under development since the late 1980’s (McKellar, 1987; Pape et al.,
1991; Grimmelius et al., 1995; Stylianou and Nikanpour, 1996). The majority of the early research was
devoted to variable air volume air-handling units. On the vapor-compression side, most work was
devoted to large systems, particularly to water chillers and single-package air conditioners (Rossi and
Braun, 1997; Castro, 2002; Li and Braun, 2003), while split air-conditioning and commercial refrigeration
systems received little attention.



CHAPTER 2. LITERATURE REVIEW

2.1 Research Background

Due to explosively growing energy needs and the global warming problem, energy conservation has
become a top priority. For the heating, ventilating, air-conditioning, and refrigerating (HVAC&R)
industry, research has been concentrating on the development of new air-conditioning technologies and
improving the energy efficiency of existing vapor compression system designs.

FDD systems were originally developed for the purpose of safety for nuclear power plants or aircraft
(Braun, 1999). In such applications, FDD systems are equipped for fail-safe operation disregarding cost.
On the other hand, a number of recent industrial applications pursue the reduction of total costs related to
equipment downtime, service costs, and utility costs. FDD systems may be applied to reduce costs
associated with all of these concerns.

As a result of the decreasing price of sensors and microprocessors, developers can affordably apply FDD
systems to automatic management of even non-critical HVAC&R systems. In addition, remote
management systems are being developed using information-based network approaches to increase
energy efficiency (Snoonian, 2003). A number of recent research efforts for optimized management
systems are being carried out in order to reduce energy consumption (Brownell et al., 1999; Seem et al.,
1999; Hayter et al., 1999; Breuker et al., 2000; Roth et al., 2005)

Generally, optimized management systems require the monitored equipment to perform their regular
operation without any failure or fault. It is quite possible that the management system may not perform as
desired due to internal faults. For difficult cases, some faults that have been neglected or considered as
negligible may reveal a fatal problem that requires a costly repair. Therefore, to protect the system from
catastrophic failure or performance degradation caused by various faults, it is desirable to introduce the
concept of fault detection and diagnostic (FDD) systems to this equipment. To do this, the real time
behaviors of residential air-conditioning units should be continuously monitored. Recently, research
interests have focused on environmentally-benign household configurations, which encompass the FDD
system as an active part of an automated building management systemE‘ang et al., 2000; Wu and Wang,
2002).

The energy savings attributable to FDD depends on the frequency and severity of faults. A brief note
based on interviews with practicing engineers and contractors reported that inefficient operation wastes at
least 20 % to 30 % of the entire HVAC energy consumption (Westphalen et al., 2003). For rooftop air-
conditioning units, the average efficiency was estimated at 80 % of the expected value. Approximately
50 % of installations were reported to have efficiency of 80 % or less and 20 % of installations had
efficiency of 70 % or less (Rossi, 2004).

Proctor (2004) surveyed over 55,000 commercial and residential air-conditioning units in California.
Proctor reported that residential systems are better managed than commercial systems; however, their
overall quality control was poor. From the report, 95 % of residential units failed the diagnostic test. The
main reasons causing the failures are listed as duct leakage, poor insulation, resistance to air flow,
improper refrigerant charge, low evaporator air flow, over-sized units, or non-condensables in the
refrigerant. Furthermore, the refrigerant charge in residential air-conditioning units was incorrect 62 % of
the time, and charge in commercial units was incorrect 60 % of the time. Proctor also provided other
survey results concerning improper installation and management problems. Proctor’s survey shows a
correlation between the quality of installation and the technician’s training and supervision.
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Figure 2.1 represents national energy flow for the United States in 2004 (DOE/EIA-0384, 2005).
Numbers by sectors represent units of energy in quads (1 quad = 1 quadrillion BTU =1 x 10" BTU =
1.055 x 10" kJ). Although residential and commercial energy demand occupies approximately 40 % of
national energy demand, it has received less attention than industrial demand. Considering that some
small commercial users utilize residential HVAC systems, energy savings efforts should be increased for
residential HVAC systems. Proper commissioning of HVAC equipment could typically reduce annual
energy consumption by 5 % to 30 % depending on the building type (Roth et al., 2003). It could reduce
commercial building HVAC energy consumption by about 0.5 quads. Based upon national energy
consumption of approximately 100 quads annually, Figure 2.1, the total savings can be estimated at 1 %
to 2 % including residential and commercial demands.
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Figure 2.1. Energy flow of the United States in 2004. Units in quadrillion BTU (DOE/EIA-0384, 2005)



2.2 Previous Research

Initial FDD research in the HVAC&R field was performed for variable air volume air-handling units and
chillers. During the development of the first FDD techniques, energy savings was a secondary
consideration to preventing equipment malfunction. Anderson et al. (1989) studied statistical analysis
preprocessors and rule based expert systems to monitor and diagnose HVAC systems. Pape et al. (1991)
developed a methodology for fault detection in HVAC systems based on optimal control. In order to
detect faults in system operation, deviation from optimal performance was sensed by comparing the
measured system power with the power predicted using the optimal control strategy. Norford and Little
(1993) presented a method for diagnosing faults in HVAC systems using parametric models of consumed
electric power.

Lee et al. (1996a) represented a scheme for detecting faults in an air-handling unit using recursive
parameter identification methods. One approach used in that study was to define residuals that represent
the difference between the existing state of the system and the normal state. Residuals that are
significantly different from zero represent the occurrence of a fault. In a successive investigation by Lee
et al. (1996b), they described the application of an art